[1] Cai X Q, Teo K L, Yang X Q, Zhou X Y. Portfolio optimization under minimax rule[J]. Management Science, 2000, 46(7): 957-972. [2] Klebaner F, Landsman Z, Makov U, Yao l. Optimal portfolios with downside risk[J]. Quantitative Finance, 2017, 17(3): 315-325. [3] Kang Z, Li Z. An exact solution to a robust portfolio choice problem with multiple risk measures under ambiguous distribution[J]. Mathematical Methods of Operations Research, 2018, 87(2): 169-195. [4] Li D, Ng W. Optimal dynamic portfolio selection: multi-period mean-variance formulation[J]. Mathematical Finance, 2010, 10(3): 387-406. [5] Zhu S S, Li D, Wang S. Risk control over bankruptcy in dynamic portfolio selection: a generalized mean-variance formulation[J]. IEEE Transactions on Automatic Control, 2004, 49(3): 447-457. [6] Bielecki T R, Jin H, Pliska S R, et al. Continuous-time mean-variance portfolio selection with bankruptcy prohibition[J]. Mathematical Finance, 2010, 15(2): 213-244. [7] Wei S Z, Ye Z X. Multi-period optimization portfolio with bankruptcy control in stochastic market[J]. Applied Mathematics & Computation, 2007, 186(1): 414-425. [8] 徐维军,罗伟强,张卫国.考虑破产风险约束的多项目投资组合决策模型[J].运筹与管理,2013(6):92-98. [9] Zhang W G, Liu Y J. Credibilitic mean-variance model for multi-period portfolio selection problem with risk control[J]. OR Spectrum, 2014, 36(1): 113-132. [10] Li B, Zhu Y, Sun Y, Aw G, Teo K L. Multi-period portfolio selection problem under uncertain environment with bankruptcy constraint[J]. Applied Mathematical Modelling, 2018, 56: 539-550. [11] 康志林,曾燕.Minimax准则下带约束的最优投资组合策略[J].系统工程学报,2012,27(5):656-667. [12] Fu Y H, Ng K M, Huang B, Huang H C. Portfolio optimization with transaction costs: a two-period mean-variance model[J]. Annals of Operations Research, 2015, 233(1): 135-156. |