运筹与管理 ›› 2023, Vol. 32 ›› Issue (8): 174-180.DOI: 10.12005/orms.2023.0267
杨蓦, 王静
YANG Mo, WANG Jing
摘要: 股票市场是一个高噪音的混沌系统,其外部属性之间的相关性问题以及在长期预测时外部影响对股价波动的加剧,导致对股票市场进行准确预测是一项富有挑战性的工作。为解决上述问题,本文利用基于注意力机制的双向长短期记忆神经网络(BiLSTM)对香港恒生指数收盘价进行有效性的实证检验。其中,空间注意力机制用于捕捉输入指标之间的相关性并为其赋予区别权重,时间注意力机制用于描述数据的时间相关性以解决长期预测中的时间依赖问题并为时间步赋予区别权重,BiLSTM神经网络用于拟合数据并构建预测模型。本文还比较了四种基于注意力机制的神经网络方法和六种基线方法,实验结果表明,与当下流行的股票指数预测方法相比,基于双维度注意力机制的BiLSTM可以在短、中、长期预测中均实现更准确的股票指数收盘价预测。
中图分类号: