运筹与管理 ›› 2020, Vol. 29 ›› Issue (12): 38-42.DOI: 10.12005/orms.2020.0311

• 理论分析与方法探讨 • 上一篇    下一篇

区域集群下板材订单配置模型及算法研究

孙卫红, 吕文新   

  1. 中国计量大学 机电工程学院,浙江 杭州 310018
  • 收稿日期:2018-09-06 出版日期:2020-12-25
  • 作者简介:孙卫红(1969-),男,教授,博士,主要研究方向:数字化设计与制造、制造业信息化;吕文新(1993-),女,硕士研究生,研究方向:供应链管理、决策优化。
  • 基金资助:
    浙江省湖州市重大科技专项重点资助项目(2015ZD2013)

Plates Order Distribution in Colony Base on Improved Immune Optimization Algorithm

SUN Wei-hong, LV Wen-xin   

  1. College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018,China
  • Received:2018-09-06 Online:2020-12-25

摘要: 针对集群企业板材资源滞留、无法共享、加工旺季材料短缺等问题,依据区域板材特性和区域企业集群地理相关优势,建立以减少需求方板材订单采购费用最小化为目标的板材订单分配模型,采用以粒子群、免疫算法相结合的混合调度算法。计算过程中,将订单分配对应企业编号作为免疫系统的抗体基因,通过比较适应度函数解与订单预算成本的关系,将抗体群区分为支配解与非支配解,提高算法对抗原的免疫能力和最优解的选择概率。最后以板材订单分配实例进行试验仿真,分别采用PSO算法与IA-PSO算法进行试验对比,对平台上6家订单发布企业寻找合适地理位置相近和价格相对低廉的供应商。试验结果表明,IA-PSO算法能够有效地解决区域集群内板材订单的匹配问题,并且在寻找价格更低和位置更合适的供应商上更有优势。

关键词: 区域企业集群, 板材资源, 抗体基因, 免疫算法, 订单匹配

Abstract: In the area of regional enterprise cluster, the reasons for the great variety kinds of plate, dispersion of distributed and lack of cooperation among enterprises, always lead to various problems, such as the retention of the internal resources, the lack of sharing, the shortage of raw materials in the processing season. IA-PSO immune optimization algorithm is proposed to reduce the cost and delivery time of user’s order and an improved multi-objective immune optimization algorithm is proposed to find a better and more feasible allocation model. By comparing the fitness function solution with the budget cost of the order, the antibody group is divided into the dominant and non-dominant solutions. The affinity evaluation function of the antibody antigen is used to improve the selection probability of the optimal solution, and the order distribution enterprise number is used as the antibody gene of the immune system, so as to select the optimal solution that converges to the global. Finally, it is proved that the IA-PSO algorithm can effectively solve the multi-objective resource scheduling problem in panel clusters.

Key words: regional enterprise cluster, variety kinds of plate, gene of antibody, immune optimization algorithm, allocation model

中图分类号: