运筹与管理 ›› 2021, Vol. 30 ›› Issue (1): 170-176.DOI: 10.12005/orms.2021.0024
梁爽1, 刁节文1, 肖邦2
LIANG Shuang1, DIAO Jie-wen1, XIAO Bang2
摘要: 随着大数据和机器学习的流行,其在破产预测和风险预测领域逐渐崭露头角。本文运用爬虫技术得到885家网贷平台的16815条数据,通过因子分析及模型验证挖掘出了若干能较好评估P2P平台风险的因子。然后本文通过选取的指标体系建立了Logistics回归、支持向量机、BP神经网络、LightGBM等单模型以及融合模型进行学习训练,所建立的融合模型在测试集中得到最高的准确率,说明本文所建的融合模型能较好地评估网贷平台的风险。本文还选取决策树绘图以及对特征进行重要性排名,选取出了对识别问题平台有重要作用的十项特征。这对投资者选取安全平台进行投资或者监管者选取重点平台进行监管有很好的借鉴意义。
中图分类号: