Operations Research and Management Science ›› 2013, Vol. 22 ›› Issue (5): 98-103.

• Theory Analysis and Methodology Study • Previous Articles     Next Articles

Fuzzy Artificial Bees Colony Algorithm for Solving Multi-choice Multidimensional Knapsack Problem

LIU Yin1, MA Liang1, HUANG Yu2   

  1. 1. Business School, University of Shanghai for Science and Technology, Shanghai 200093, China;
    2. School of Communication and Art Design, University of Shanghai for Science and Technology, Shanghai 200093, China
  • Received:2012-10-23 Online:2013-10-25

模糊人工蜂群算法的多选择多维背包问题求解

柳寅1, 马良1, 黄钰2   

  1. 1.上海理工大学 管理学院,上海 200093;
    2.上海理工大学 出版印刷与艺术设计学院,上海 200093
  • 作者简介:柳 寅(1986-),男,博士研究生,研究方向:智能优化;马 良(1964-),男,教授,研究方向:智能优化;黄 钰(1988-),女,硕士,研究方向:教育经济。
  • 基金资助:
    国家自然科学基金资助项目(70871081);上海市重点学科建设资助项目 (S30504);上海市研究生创新基金资助项目 (JWCXSL1201 )

Abstract: Aiming at the premature convergence problem in traditional artificial bees colony algorithm, fuzzy artificial bees colony algorithm is proposed, which is based on the principles of fuzzy processing and bees colony behavior. Fuzzy inputs and fuzzy outputs are introduced into the algorithm to maintain dynamic updates of the nectar access probability. According to effective adjustment on nectar access probability during the different stages of algorithm calculation, the algorithm avoids local optima. Simulated tests of multi-choice multidimensional knapsack problem and comparisons with other algorithms show the algorithm is feasible and effective and the algorithm has strong global optimization ability.

Key words: intelligent optimization algorithm, fuzzy rules, fuzzy artificial bees colony algorithm, multi-choice multidimensional knapsack problem

摘要: 针对传统人工蜂群算法早熟收敛问题,基于模糊化处理和蜂群寻优的特点,提出一种模糊人工蜂群算法。将模糊输入输出机制引入到算法中来保持蜜源访问概率的动态更新。根据算法计算过程中的不同阶段对蜜源访问概率有效调整,避免算法陷入局部极值。通过对多选择多维背包问题的仿真实验和与其他算法的比较,表明本算法可行有效,有良好的鲁棒性。

关键词: 智能优化算法, 模糊规则, 模糊人工蜂群算法, 多选择多维背包问题

CLC Number: