XIAO Zhenyu, WANG Jie, LI Shanshan, SHI Kuiran. Time-varying Multivariate NBS Copula Model and Visualized Dependence Analysis of American Stock Index Futures Market[J]. Operations Research and Management Science, 2023, 32(5): 190-196.
[1] 王锦阳,刘锡良,杜在超.相依结构、动态系统性风险测度与后验分析[J].统计研究,2018,35(3):3-13. [2] WEI Z, KIM S, CHOI B,et al. Multivariate skew normal copula for asymmetric dependence: Estimation and application[J]. International Journal of Information Technology & Decision Making, 2019, 18(1): 365-387. [3] DEMARTA S, MCNEIL A J. The t copula and related copulas[J]. International Statistical Review, 2005, 73(1): 111-129. [4] YOSHIBA T. Maximum likelihood estimation of skew-t copulas with its applications to stock returns[J]. Journal of Statistical Computation and Simulation, 2018, 88(13): 2489-2506. [5] SMITH M S, GAN Q, KOHN R J. Modelling dependence using skew t copulas: Bayesian inference and applications[J]. Journal of Applied Econometrics, 2012, 27(3): 500-522. [6] LIU C S, CHANG M S, WU X, et al. Hedges or safe havens-revisit the role of gold and USD against stock: A multivariate extended skew-t copula approach[J]. Quantitative Finance, 2016, 16(11): 1763-1789. [7] XIAO Z Y, WANG J, CHENG T Y, et al. A time-varying multivariate noncentral contaminated normalcopula model and its application to the visualized dependence analysis of Hong Kong Stock Markets[J]. Discrete Dynamics in Nature and Society, 2020(1): 1-23. [8] POURMOUSA R, JAMALIZADEH A, REZAPOUR M. Multivariate normal mean-variance mixture distribution based on birnbaum-saunders distribution[J]. Journal of Statistical Computation and Simulation, 2015, 85(13): 2736-2749. [9] NADERI M, ARABPOUR A, LIN T I, et al. Nonlinear regression models based on the normal mean-variance mixture of birnbaum-saunders distribution[J]. Journal of the Korean Statistical Society, 2017, 46: 476-485. [10] NADERI M, HUNG W L, LIN T I, et al. A novel mixture model using the multivariate normal mean-variance mixture of Birnbaum-Saunders distributions and its application to extrasolar planets[J]. Journal of Multivariate Analysis, 2019, 171: 126-138. [11] ENGLE R. Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroscedasticity models[J]. Journal of Business & Economic Statistics, 2002, 20(3): 339-350. [12] TSE Y K, TSUI A K C. A multivariate generalized autoregressive conditional heteroscedasticity model with time-varying correlations[J]. Journal of Business & Economic Statistics, 2002, 20(3): 351-362. [13] CAPPIELLO L, ENGLE R F, SHEPPARD K. Asymmetric dynamics in the correlations of global equity and bond returns[J]. Journal of Financial Econometrics, 2006, 4(4): 537-572. [14] PATTON A J. Modelling asymmetric exchange rate dependence[J]. International Economic Review, 2006, 47(2): 527-556. [15] CREAL D, KOOPMAN S J, LUCAS A. Generalized autoregressive score models with applications[J]. Journal of Applied Econometrics, 2013, 28(5): 777-795. [16] SILVENNOINEN A, TERÄSVIRTA T. Modeling conditional correlations of asset returns: A smooth transition approach[J]. Econometric Reviews, 2015, 34(1-2): 174-197. [17] CHRISTOFFERSEN P, ERRUNZA V, LANGLOIS H,et al. Is the potential for international diversificationdisappearing? A dynamic copula approach[J]. Review of Financial Studies, 2012, 25(12): 3711-3751. [18] LUCAS A, SCHWAAB B, ZHANG X. Conditional euro area sovereign default risk[J]. Journal of Business & Economic Statistics, 2014, 32(2): 271-284.