[1] ZHANG J, ZHENG Y, QI D, et al. DNN-based prediction model for spatio-temporal data[C]//ALI M, NEWSAM S, RAVADA S, et al. Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. Burlingame: ACM, 2016: 1-4. [2] WANG B, KIM I. Short-term prediction for bike-sharing service using machine learning[C]//YOSHII T, SHIOMI Y, KUSAKABE T, et al. Proceedings of the International Symposium of Transport Simulation. Ehime Univ, Matsuyama: Elsevier, 2018: 171-178. [3] LIU X, GHERBI A, LI W, et al. Multi features and multi-time steps LSTM based methodology for bike sharing availability prediction[C]//SHAKSHUKI E, YASAR A, MALIK H. Proceedings of the 14th International Conference on Future Networks and Communications. Halifax: Elsevier, 2019: 394-401. [4] 许淼,刘宏飞,初凯.基于AM-LSTM模型的共享单车时空需求预测[J].湖南大学学报(自然科学版),2020,47(12):77-85. [5] 刘耿耿,朱予涵,郭灿阳.基于双向长短期记忆网络的共享单车流量预测[J].小型微型计算机系统,2021,42(9):1871-1876. [6] 徐冰冰,岑科廷,黄俊杰,等.图卷积神经网络综述[J].计算机学报,2020,43(5):755-780. [7] XIAO G, WANG R, ZHANG C, et al. Demand prediction for a public bike sharing program based on spatio-temporal graph convolutional networks[J]. Multimedia Tools and Applications, 2020, 80(15): 22907-22925. [8] KIM T S, LEE W K, SOHN S Y. Graph convolutional network approach applied to predict hourly bike-sharing demands considering spatial, temporal, and global effects[J]. PLoS One, 2019, 14(9): 1-16. [9] HE S, SHIN K G. Towards fine-grained flow forecasting: A graph attention approach for bike sharing systems[C]//HUANG Y, KING I. Proceedings of the Web Conference 2020. Taipei: ACM, 2020: 88-98. [10] LIN L, HE Z, PEETA S. Predicting station-level hourly demand in a large-scale bike-sharing network: A graph convolutional neural network approach[J]. Transportation Research Part C: Emerging Technologies, 2018, 97: 258-276. [11] CHAI D, WANG L, YANG Q. Bike flow prediction with multi-graph convolutional networks[C]//BANAEI-KASHANI F, HOEL E, GÜTING R H, et al. Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. Seattle: ACM, 2018: 397-400. [12] KINGMA D P, BA J L. Adam: A method for stochastic optimization[C]//BENGIO Y, LECUN Y. Proceedings of the 3rd International Conference on Learning Representations. San Diego: ICLR, 2015: 1-15. [13] FROEHLICH J E, NEUMANN J, OLIVER N. Sensing and predicting the pulse of the city through shared bicycling[C]//KITANO H. Proceedings of the 21st International Joint Conference on Artificial Intelligence. Pasadena: IJCAI, 2009: 1420-1426. [14] TIBSHIRANI R. Regression shrinkage and selection via the lasso: A retrospective[J]. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2011, 73(3): 273-282. [15] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. [16] BISHOP C M. Neural Networks for Pattern Recognition[M]. Oxford: Oxford University Press, 1995. [17] LIN L, WANG Q, HUANG S, et al. On-line prediction of border crossing traffic using an enhanced spinning network method[J]. Transportation Research Part C: Emerging Technologies, 2014, 43: 158-173. [18] LIN L, LI Y, SADEK A. A k nearest neighbor based local linear wavelet neural network model for on-line short-term traffic volume prediction[J]. Procedia-Social and Behavioral Sciences, 2013, 96: 2066-2077. [19] CHEN T, GUESTRIN C. Xgboost: A scalable tree boosting system[C]//KRISHNAPURAM B, SHAH M. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016: 785-794. |