HE Jing, SUN Yu. Kolmogorov Entropy Analysis of Chaotic State Verification of Metaverse[J]. Operations Research and Management Science, 2025, 34(4): 28-33.
[1] 新媒沈阳团队.元宇宙发展研究报告2.0版[R].北京:清华大学新闻与传播学院新媒体研究中心,2022. [2] 宋砚秋,李慧嘉,王倩,等.基于Kolmogorov熵的系统协同效应度量方法及实证[J].运筹与管理,2020,29(5):189-197. [3] TIGAN G, LAZUREANU C, MUNTRANU F, et al. Analysis of a class of Kolmogorov systems[J]. Nonlinear Analysis: Real World Applications, 2021, 57: 103202. [4] RAYNAL P, FRIKHA N. From the backward Kolmogorov PDE on the Wasserstein space to propagation of chaos for McKean-Vlasov SDEs[J]. Journal de Mathématiques Pures et Appliquées, 2021, 156: 1-124. [5] 孙显曜,吴国林.非线性、混沌与宇宙的有限无限问题[J].自然辩证法研究,1994(4):8-16. [6] 鲁力立,许鑫.从“混合”到“混沌”:元宇宙视角下的未来教学模式探讨—以华东师范大学云展厅策展课程为例[J].图书馆论坛,2022,42(1):53-61. [7] 刘传孝.砂岩全应力应变试验曲线阶段特征的Kolmogorov熵分析[J].计算力学学报,2006(2):247-251. [8] LI T, YORKE J. Period three implies chaos[J]. American Mathematical Monthly, 1975, 82: 985-992. [9] JIAO X, DONG E, WANG Z. Dynamic analysis and FPGA implementation of a Kolmogorov-like hyperchaotic system[J]. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2021, 31(4): 2150052. [10] LACZKOVICH M. A superposition theorem of Kolmogorov type for bounded continuous functions[J]. Journal of Approximation Theory, 2021, 269(1): 105609.