ZHI Luping, WANG Wanmin. Analysis of Multidimensional Time-series Data EnhancementBased on TL-TimeGAN and its Application[J]. Operations Research and Management Science, 2025, 34(5): 177-184.
[1] 葛轶洲,许翔,杨锁荣,等.序列数据的数据增强方法综述[J].计算机科学与探索,2021,15(7):1207-1219. [2] ODONGO S E, DONG H. Feature representation and data augmentation for human activity classification based on wearable IMU sensor data using a deep LSTM neural network[J]. Sensors, 2018, 18(9): 2892. [3] 朱克凡,王杰贵,刘有军.小样本条件下基于数据增强和WACGAN的雷达目标识别算法[J].电子学报,2020,48(6):1124-1131. [4] KANG Y, HYNDMAN R J, LI F. GRATIS: Generating time series with diverse and controllable characteristics[J]. Statistical Analysis and Data Mining, 2020, 13(4): 354-376. [5] HYLAND S L, ESTEBAN C, RTSCH G. Real-valued (medical) time series generation with recurrent conditional GANs[J/OL]. arXiv, 2017: 1706.02633v2[2023-04-05]. http://arxiv.org/pdf/1706.02633v2. [6] YOON J, JARRETT D, VAN DER SCHAAR M. Time-series generative adversarial networks[C]//The 33rd International Conference on Neural Information Processing Systems (NeurIPS 2019), December 8-14, 2019, Vancouver, Canada. New York: Curran Associates Inc., 2019: 5508-5518. [7] 孙晨峰,吕卫民,戴洪德等.一种基于TimeGAN和OCSVM的多元退化设备小子样数据增广方法[J].电子学报,2022,50(11):2678-2687. [8] Kaggle. Kaggle Competition: American Express-Default Prediction, 2022. [EB/OL].(2022-05-25)[2023-03-01].https://www.kaggle.com/competitions/amex-default-prediction. [9] BOUNLIPHONE W, BELILOVSKY E, BLASCHKO M B, et al. A test of relative similarity for model selection in generative models[C/OL]//The 4th International Conference on Learning Representations (ICLR 2016), May 2-4, 2016, San Juan, Puerto Rico. 2016: 1511. 04581v4[2023-04-05]. https://arxiv.org/pdf/1511.04581v4. [10] ALIYEV V. Ethereum Fraud Detection Dataset: 2021[DS/OL]. (2020-12-25)[2023-03-01]. https://www.kaggle.com/datasets/vagifa/ethereum-frauddetection-dataset.