HUANG Ying-quan. Some Characterizations of the Optimality of D-η-properly Semi-prequasiinvex Multiobjective Optimization[J]. Operations Research and Management Science, 2018, 27(2): 65-67.
[1] Hanson M A. On sufficiency of the kuhn-tucker conditions[J]. Journal of Mathematical Analysis and Applications, 1981, 80(2): 545-550. [2] Weir T, Mond B. Pre-invex functions in multiple objective optimization[J]. Journal of Mathematical Analysis and Applications, 1988, 136(1): 29-38. [3] Weir T,Jeyakumar V. A class of nonconvex functions and mathematical programming[J]. Bulletin of the Australian Mathematical Society, 1988, 38(2): 177-189. [4] Yang X M,Li D. On properties of preinvex functions[J]. Journal of Mathematical Analysis and Applications, 2001, 256(1): 229-241. [5] Yang X M,Li D. Semistrictly preinvex functions[J]. Journal of Mathematical Analysis and Applications, 2001, 258(1): 287-308. [6] Yang X Q, Chen G Y. A class of nonconvex functions and pre-variational inequalities[J]. Journal of Mathematical Analysis and Applications, 1992, 169(2): 359-373. [7] 彭建文.向量值映射D-η-预不变真拟凸的性质[J].系统科学与数学,2003,23(3):306-314. [8] 朱见广.几类广义凸向量值映射的性质及在最优化理论中的应用[D].硕士学位论文.重庆:重庆师范大学,2008. [9] 杨新民,戎卫东.广义凸性及其应用[M].第一版. 北京:科学出版社,2016. [10] 彭建文.广义凸性及其在最优化问题中的应用[D].博士学位论文.呼和浩特:内蒙古大学,2005. [11] Luc D T. Theory of vector optimization[M]. Berlin: Springer-Verlag , 1989.