[1] Tsiveriotis K, Fernandes C. Valuing convertible bonds with credit risk[J]. Journal of Fixed Income, 1998, 8(2): 95-102. [2] 李念夷,陈懿冰.基于违约风险的三叉树模型在可转债定价中的应用研究[J].管理评论,2011,23(12):26-31. [3] Xiao T. A simple and precise method for pricing convertible bond with credit risk[J]. Journal of Derivatives and Hedge Funds, 2013, 19(4): 259-277. [4] 潘坚,肖庆宪.基于随机违约和利率双重风险的可转换债券的定价[J].西南师范大学学报(自然科学版),2017,42(7):138-145. [5] Mandelbrot B. The variation of certain speculative prices[J]. The Journal of Business, 1963, 36(4): 394-419. [6] Rroji E, Mercuri L. Mixed tempered stable distribution[J]. Quantitative Finance, 2014, 15(9): 1-11. [7] 吴恒煜,朱福敏,温金明.基于ARMA-GARCH调和稳态Levy过程的期权定价[J].系统工程理论与实践, 2013,33(11):2721-2733. [8] Tsallis C. Possible generalization of boltzmann-gibbs statistics[J]. Journal of Statistical Physics, 1988, 52(1-2): 479-487. [9] Michael F, Johnson M D. Financial market dynamics[J]. Physica a statistical mechanics and its applications, 2003, 320(1): 525-534. [10] Borland L. Option pricing formulas based on a non-gaussian stock price model[J]. Physical Review Letters, 2002, 89(9): 1-12. [11] 张磊,苟小菊.基于Tsallis理论的中国股市收益分布研究[J].运筹与管理,2012,21(3):200-205. [12] 赵攀,肖庆宪.基于Tsallis熵分布的欧式期权定价[J].系统工程,2015,33(1):18-23. [13] 焦博雅,王永茂.基于Tsallis分布和更新过程的欧式期权定价[J].数学的实践与认识,2018,48(7):95-101. [14] 郑小迎,陈金贤.关于可转换债券定价模型的研究[J].预测,1999,3(17):40-43. [15] 徐长发.实用偏微分方程数值解法[M].武汉:华中理工大学出版社,2000. |