[1] Krauss C, Do X A, Huck N. Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500[J]. European Journal of Operational Research, 2017, 259(2): 689-702. [2] Malagrino L S , Roman N T , Monteiro A M . Forecasting stock market index daily direction: a bayesian network approach[J]. Expert Systems with Applications, 2018, 105: 11-22. [3] Patel J, Shah S, Thakkar P, Kotecha K. Predicting stock market index using fusion of machine learning techniques[J]. Expert Systems with Applications, 2015, 42(4): 2162-2172. [4] Fischer T, Krauss C. Deep learning with long short-term memory networks for financial market predictions[J]. European Journal of Operational Research, 2018,270(2): 654-669. [5] 李斌,林彦,唐闻轩.ML—TEA:一套基于机器学习和技术分析的量化投资算法[J].系统工程理论与实践,2017,37(5):1089-1100. [6] 孔翔宇,毕秀春,张曙光.财经新闻与股市预测——基于数据挖掘技术的实证分析[J].数理统计与管理,2016,35(2):215-224. [7] 王淑燕,曹正凤,陈铭芷.随机森林在量化选股中的应用研究[J].运筹与管理,2016,25(3):163-168. [8] Chen T, Guestrin C. XGBoost: a scalable tree boosting system[J]. knowledge discovery and data mining, 2016: 785-794. [9] 杨建国.小波分析及其工程应用[M].机械工业出版社,2005:64-65. [10] 陈蓉,陈焕华,郑振龙.动量效应的行为金融学解释[J].系统工程理论与实践,2014, 34(3):613-622. [11] Nofer M, Hinz O. Using twitter to predict the stock market[J]. Business & Information Systems Engineering, 2015, 57(4): 1-14. [12] Hu H, Tang L, Zhang S, Wang H. Predicting the direction of stock markets using optimized neural networks with Google Trends[J]. Neurocomputing, 2018: 188-195. [13] 陈晓红,彭宛露,田美玉.基于投资者情绪的股票价格及成交量预测研究[J].系统科学与数学,2016,36(12):2294-2306. [14] Ballings M, Den Poel D V, Hespeels N, Gryp R. Evaluating multiple classifiers for stock price direction prediction[J]. Expert Systems With Applications, 2015, 42(20): 7046-7056. [15] Trevor Hastie, Robert Tibshirani, Jerome Friedman. The elements of statistical learning[M].Springer, 2009.367-371. |