运筹与管理 ›› 2017, Vol. 26 ›› Issue (3): 178-186.DOI: 10.12005/orms.2017.0073

• 管理科学 • 上一篇    下一篇

混流无等待流水线批次批量生产计划方法

蒙秋男, 白雪, 赵聪   

  1. 大连理工大学 管理与经济学部,辽宁 大连 116024
  • 收稿日期:2015-07-15 出版日期:2017-03-25
  • 作者简介:蒙秋男(1969-),女,黑龙江省齐齐哈尔市人。副教授,博士。主要从事计划调度和成本管理等研究。
  • 基金资助:
    国家自然科学基金(71172137);国家科技支撑计划(2015BAF09B01)

Batch Production Planning for Mixed Flow of No-wait Assembly Lines

MENG Qiu-nan, BAI Xue, ZHAO Cong   

  1. Faculty of Management and Economics, Dalian University of Technology, Dalian 116024, China
  • Received:2015-07-15 Online:2017-03-25

摘要: 在两阶段混流无等待流水装配环境下,为解决任务组批生产导致的订单按期交付能力弱,以及产品需求与部件供应无法准确衔接的问题,以最小化在制品库存成本和产品提前拖期惩罚为目标,建立了两阶段批次批量生产计划数学模型。设计了双目标蚁群求解算法,构造了每只蚂蚁对不同目标的偏重算子,以及基于批次的可行解生成方法和信息素更新机制,提高了解的局部和全局搜索能力。通过与NSGA-II进行对比,验证了本算法在同等时间内计算精度优于后者,为提高两阶段多条生产线组批生产计划的可执行性提供方法支持。

关键词: 混流无等待流水线, 两阶段生产计划, 批次, 双目标蚁群算法

Abstract: In mixed flow of no-wait assembly lines, it is a challenge to deliver orders timely and supply parts needed by the second stage accurately in batch production. A mathematical model of two-stage batch planning is presented aiming at minimization of both WIP inventory cost and earliness/tardiness penalty of orders. A bi-objective ant colony optimization algorithm(BOACO)is then developed wherein an operator of preferring to different targets for each of ants, feasible solutions and mechanism of updating pheromone based on the batch are formulated to improve the local and global search ability of BOACO significantly. The experiments are conducted to compare BOACO and NSGA-II. The result shows BOACO outperforms NSGA-II within the same computation time. Therefore, the proposed method of batch production planning provides support for enhancing the performability of production planning in multiple batch production lines of two stages.

Key words: mixed flow of no-wait assembly line, two-stage production planning, batch, bi-objective ant colony optimization algorithm

中图分类号: