[1]刘建国,周涛,郭强,汪秉宏.个性化推荐系统评价方法综述[J].复杂系统与复杂性科学,2009,6(3):1-12. [2]孟祥武,刘树栋,张玉洁,胡勋.社会化推荐系统研究[J].软件学报,2015,26(6):1356-1372. [3]孟祥武,纪威宇,张玉洁.大数据环境下的推荐系统[J].北京邮电大学学报,2015,38(2):1-15. [4]Heung-Nam Kim, Inay Ha, Kee-Sung Lee, Geun-Sik Jo, Abdulmotaleb El-Saddik. Collaborative user modeling for enhanced content filtering in recommender systems[J]. Decision Support Systems, 2011, 51(4): 772-781. [5]崔春生.基于泛函网络的组合推荐算法[J].系统工程理论与实践,2014,34(4):1039-1047. [6]石慧霞.基于点击反馈模型的内容推荐算法研究[J].机床与液压,2016, 44(12):129-135. [7]周成林,黄长江,田景凡,李超.基于用户检索历史的个性化内容推荐算法的设计与实现[J].数字技术与应用,2015(10):142-142. [8]黄宏寅,徐德华.基于推荐完整性的电子商务推荐系统架构的设计[J].计算机应用研究,2010,27(12):4591-4593. [9]Dooms S, Audenaert P, Fostier J, De Pessemier T, Martens L. In-memory, distributed content-based recommender system[J]. Journal of Intelligent Information Systems, 2014, 42(3): 645-669. [10]Soares Rcio M, Viana P. Tuning metadata for better movie content-based recommendation systems[J]. Multimedia Tools and Applications. 2015, 74(17): 7015-7036. [11]顾立志.电子商务推荐系统主要推荐技术研究[J].计算机光盘软件与应用,2014(8):41-42. [12]陈宗言,颜俊.基于稀疏数据预处理的协同过滤推荐算法[J].计算机技术与发展,2016,26(7):59-64. [13]高倩,何聚厚.改进的面向数据稀疏的协同过滤推荐算法[J].计算机技术与发展,2016,26(3):63-66. [14]Sharifi Z, Rezghi M, Nasiri M. A new algorithm for solving data sparsity problem based-on non negative matrix factorization in recommender systems[J]. International Econference on Computer & Knowledge Engineering, 2014(10): 56-61. [15]Niu J, Wang L, Liu X, Yu S. FUIR: fusing user and item information to deal with data sparsity by using side information in recommendation systems[J]. Journal of Network & Computer Applications, 2016,70: 41-50. [16]Dekang Lin. An information-theoretic definition of similarity[J]. Proceedings of the Fifteenth International Conference on Machine Learning, 1998, 1(2): 296-304. [17]唐积益,黄树成.优化相似度计算在推荐系统中的应用[J].电子设计工程,2015,23(23):46-48. [18]崔春生.基于Vague集的网上机票比价研究[J].系统工程理论实践,2015,35(2):437-444. |