[1] Wanke P, Baros C P, Faria J R. Financial distress drivers in Brazilian banks: a dynamic slacks approach[J]. European Journal of Operational Research, 2014, 240(1): 258-268. [2] Hua Z, Wang Y, Xu X, et al. Predicting corporate financial distress based onIntegration of support vector machine and logistic regression[J]. Expert Systemswith Applications, 2007, 33: 434-440. [3] Purnanandam. Financial distress and corporate risk management: theory and evidence[J]. Journal of Financial Economics, 2008, 87: 706-739. [4] Fehle F, Tsyplakov S. Dynamic risk management: theory and evidence[J]. Journal of Financial Economics, 2005, 78: 3-47. [5] 田宝新,王建琼.基于财务与非财务要素的上市公司财务困境预警实证研究[J].金融评论,2017,5:103-115. [6] 陈磊.任若恩.时间序列判别分析技术和指数加权移动平均控制图模型在 公司财务危机预警中的应用[J].系统管理学报,2009,(4):241-251. [7] 赵冠华.基于邻域粗糙集属性约简的对偶约束式LS-SVM财务困境预测模型研究[J].运筹与管理.2011,20(3):132-139. [8] 鲍新中,傅宏宇.基于变精度加权平均粗糙度决策树的财务预警研究[J].运筹与管理,2015,24(3):189-196. [9] 王鲁,吴冲.基于自组织映射和模糊隶属度的财务危机预警研究[J].运筹与管理,2017,26(12):119-125. [10] 吴冲,刘佳明,郭志达.基于改进粒子群算法的模糊聚类-概率神经网络模型的企业财务危机预警模型研究[J].运筹与管理,2018,27(2):106-114. [11] 彭韶兵,邢精平.公司财务危机论[M].清华大学出版社,2005,(9):50-62 [12] Odom M, Sharda R. A neural networks model for bankruptcy prediction[C]. Proceedings of the IEEE International Conference on Neural Network, 1990, 2: 163-168. [13] Liu X Y, Liu H J. Genetic neural network based financial distress prediction[C]. Advanced Materials Research, 2014, 933: 921-925. [14] Hsuan-Ming Feng, Hsiang-Chai Chou. Evolutional RBFNs prediction systems generation in the applicationsof financial time series data[J]. Expert Systems with Applications, 2011, 38: 8285-8292. [15] Mu-Yen Chen. A hybrid ANFIS model for business failure prediction utilizing particle swarm optimization and subtractive clustering[J]. Information Sciences, 2013, 220: 180-195. [16] Ligang Zhou, Kin Keung Lai, Jerome Yen. Empirical models based on features ranking techniques for corporate financial distress prediction[J]. Computers and Mathematics with Applications, 2012, 64: 2484-2496. [17] Arindam Chaudhuri, Kajal De. Fuzzy Support Vector Machine for bankruptcy prediction[J]. Applied Soft Computing, 2011, 11: 2472-2486. [18] Tsung-Jung Hsieh, Hsiao-FenHsiao, Wei-ChangYeh. Mining financial distress trend data using penalty guided support vector machines based on hybrid of particle swarm optimization and artificial bee colony algorithm[J]. Neurocomputing, 2012, 82: 196-206. [19] Ching-Chiang Yeh, Der-Jang Chi, Ming-Fu Hsu. A hybrid approach of DEA, rough set and support vector machines for business failure prediction[J]. Expert Systems with Applications, 2010, 37: 1535-1541. [20] Fengyi Lin, Ching-Chiang Yeh, Meng-Yuan Lee. The use of hybrid manifold learning and support vector machines in theprediction of business failure[J]. Knowledge-Based Systems, 2011, 24: 95-101. [21] Tony VanGestel, BartBaesens, DavidMartens. From linear to non-linear kernel based classifiers for bankruptcy prediction[J]. Neurocomputing, 2010, 73: 2955-2970. [22] Shian-Chang Huang, Yu-Cheng Tang, Chih-Wei Lee, Ming-Jen Chang. Kernel local Fisher discriminant analysis based manifold-regularized SVM modelfor financial distress predictions[J]. Expert Systems with Applications, 2012, 39: 3855-3861. [23] Gönen M, Alpaydln E. Multiple Kernel Learning Algorithms[J]. Journal of Machine Learning Research, 2011, 12: 2181-2238. [24] Gu Y, Wang C, You D, et al. Representative multiple kernel learning for classification in hyperspectral imagery[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2012, 50(7): 2852-2865. [25] Zhang X, Hu L. An efficient multiple kernel computation method for regression analysis of economic data[J]. Neurocomputing, 2013, 118: 58-64. [26] Zhang X, Hu L. A nonlinear subspace multiple kernel learning for financial distress prediction of chinese listed companies[J]. Neurocomputing, 2016, 177: 636-642. [27] Yeh Y R, Lin T C, Chung Y Y, et al. A novel multiple kernel learning framework for heterogeneous feature fusion and variable selection[J]. Multimedia, IEEE Transactions on, 2012, 14(3): 563-574. [28] Wang Q, Gu Y, Tuia D. Discriminative multiple kernel learning for hyperspectral image classification[J]. IEEE Transaction on Geoscience and Remote Sensing, 2016, 54(7): 3912-3927. |