运筹与管理 ›› 2022, Vol. 31 ›› Issue (6): 1-8.DOI: 10.12005/orms.2022.0175

• 理论分析与方法探讨 •    下一篇

基于启发式Q学习的汽车涂装车间作业排序优化

金淳, 冷浕伶, 胡畔   

  1. 大连理工大学 经济与管理学院,辽宁 大连 116024
  • 收稿日期:2019-03-18 出版日期:2022-06-25 发布日期:2022-07-20
  • 作者简介:金淳(1963-),男,辽宁大连人,教授,博士,研究方向:供应链及物流管理,系统仿真与优化;冷浕伶(1990-),女,辽宁沈阳人,博士,研究方向:生产调度,优化方法,深度学习;胡畔(1994-),女,辽宁锦州人,硕士,研究方向:生产调度,机器学习。
  • 基金资助:
    国家自然科学基金资助项目(71671025)

Optimization on Car Sequencing Problem in Automotive Paint Shops with Heuristic Q-learning

JIN Chun, LENG Jin-ling, HU Pan   

  1. School of Economics and Management, Dalian University of Technology, Dalian 116024, China
  • Received:2019-03-18 Online:2022-06-25 Published:2022-07-20

摘要: 针对汽车涂装车间中的作业优化排序问题,提出一种基于启发式Q学习的优化算法。首先,建立包括满足总装车间生产顺序和最小化喷枪颜色切换次数的多目标整数规划模型。将涂装作业优化排序问题抽象为马尔可夫过程,建立基于启发式Q算法的求解方法。通过具体案例,对比分析了启发式Q学习、Q学习、遗传算法三种方案的优劣。结果表明:在大规模问题域中,启发式Q学习算法具有寻优效率更高、效果更好的优势。本研究为机器学习算法在汽车涂装作业优化排序问题的应用提出了新思路。

关键词: 运筹学, 作业排序问题, 启发式Q学习, 汽车涂装车间, 涂色批量

Abstract: Aiming at the optimization of job scheduling in automotive paint shops, an optimization algorithm based on heuristic Q learning is proposed. For starters, a multi-objective integer programming model is established with the purpose of keeping painting sequence consistent with the production sequence of the assembly shop and minimizing the number of color switches. The optimization problem of painting job is abstracted into a Markov process, and a solution method based on heuristic Q algorithm is established. Through the specific cases, the advantages and disadvantages of heuristic Q learning, Q learning and genetic algorithm are compared and analyzed. The results show that the heuristic Q learning algorithm has the advantages of higher efficiency and better effect, which are more pronounced in large-scale issues. This study proposes a new idea for the application of machine learning algorithms in the optimization of job scheduling in automotive paint shops.

Key words: operations research, car sequencing problem, heuristic Q-learning, automotive paint shop, color-batch

中图分类号: