[1] YU S, WANG H R, DONG C S. Learning risk preferences from investment portfolios using inverse optimization[J]. Research in International Business and Finance, 2023, 64: 101879. [2] HEUBERGER C. Inverse combinatorial optimization: A survey on problems, methods, and results[J]. Journal of Combinatorial Optimization, 2004, 8: 329-361. [3] 陈禹伊,陈璐.车辆路径规划问题的逆向优化方法[J].上海交通大学学报,2022,56(1):81-88. [4] 李子慷,刘林冬,于成成.范数下无容量限制设施选址逆问题的求解方法[J].运筹与管理,2022,31(7):86-92. [5] 王博,初丽,张立卫,等.随机二阶锥二次规划逆问题的SAA方法[J].运筹学学报,2022,26(2):31-44. [6] LU Y, HUANG M, ZHANG Y, et al. A nonconvex ADMM for a class of sparse inverse semidefinite quadratic programming problems[J]. Optimization: A Journal of Mathematical Programming and Operations Research, 2019, 68(5/8): 1075-1105. [7] LI L D, ZHANG L W, ZHANG H W. Inverse semidefinite quadratic programming problem with l1 norm measure[J]. Journal of Computational and Applied Mathematics, 2020, 376: 112838. [8] 李丽丹,郭燕,徒君.一类半定二次规划逆问题[J].应用数学学报,2022,45(4):533-550. [9] ZHANG J Z, ZHANG L W, XIAO X T. A perturbation approach for an inverse quadratic programming problem[J]. Mathematical Methods of Operations Research, 2010, 72: 379-404. [10] ZHANG J Z, ZHANG L W. An augmented Lagrangian method for a class of inverse quadratic programming problems[J]. Applied Mathematics and Optimization, 2010, 61: 57-83. [11] 卢越,张继宏,张立卫.一类二次规划逆问题的交替方向数值方法[J].运筹学学报,2014,18(2):1-16. [12] SUN D F. The strong second order sufficient condition and constraint nondegenracy in nonlinear semidefinite programming and their implications[J]. Mathematical Methods of Operations Research, 2006, 31: 761-776. [13] CLARKE F H. Optimization and Nonsmooth Analysis[M]. New York: John Wiley and Sons, Inc., 1983. [14] ZARANTONELLO E H. Projections on convex sets in hilbert space and spectral theory: I and II[M]//ZARANTONELLO E H. Contributions to Nonlinear Functional Analysis. New York: Academic Press, 1971: 237-424. [15] MENG F W, SUN D F, ZHAO G Y. Semi-smoothness of solutions to generalized equations and the Moreau-Yosida regularization[J]. Mathematical Programming, 2005, 104: 561-581. [16] SUN D F, SUN J. Semismooth matrix valued functions[J]. Mathematics of Operations Research, 2002, 27: 150-169. [17] FACCHINEI F, FISCHER A, KANZOW C. Inexact Newton methods for semismooth equations with applications to variational inequality problems[M]//PILLO G D, GIANNESSI F. Nonlinear Optimization and Applications. New York: Springer, 1996: 125-139. |