[1] HO J M, LEE D T, CHANG C H. Minimum diameter spanning trees and related problems[J]. SIAM Journal on Computing, 1991, 20(5): 987-997.
[2] MEGIDDO N. Linear-time algorithm for linear programming in R3 and related problems[J]. SIAM Journal on Computing, 1983, 12(4): 759-776.
[3] CHAN T M. Semi-online maintenance of geometric optima and measures[J]. SIAM Journal on Computing, 2003, 32(3): 700-716.
[4] HASSIN R, TAMIR A. On the minimum diameter spanning tree problem[J]. Information Processing Letters, 1995, 53(2): 109-111.
[5] HANDLER G Y. Minimax location of a facility in an undirected tree graph[J]. Transportation Science, 1973, 7(3): 287-293.
[6] BUTELLE F, LAVAULT C, BUI M. A uniform self-stabilizing minimum diameter spanning tree algorithm[C]//HÉLARY J M, RAYNAL M. Proceedings of the 9th International Workshop on Distributed Algorithms (WDAG'95). Berlin: Springer, 1995: 257-272.
[7] BUI M, BUTELLE F, LAVAULT C. A distributed algorithm for constructing a minimum diameter spanning tree[J]. Journal of Parallel and Distributed Computing, 2004, 64(5): 571-577.
[8] BLIN L, BOUBEKEUR F, DUBOIS S. A self-stabilizing memory efficient algorithm for the minimum diameter spanning tree under an omnipotent daemon[J]. Journal of Parallel and Distributed Computing, 2018, 117: 50-62.
[9] LIU C, MONTANARI S. Minimizing the diameter of a spanning tree for imprecise points[J]. Algorithmica, 2018, 80: 801-826.
[10] GRUBER M, RAIDL G R. Solving the euclidean bounded diameter minimum spanning tree problem by clustering-based (Meta-)heuristics[C]//MORENO-DÍAZ R, PICHLER F, QUESADA-ARENCIBIA A. Computer Aided Systems Theory—EUROCAST 2009. Berlin: Springer, 2009: 665-672.
[11] BINH H, HOAI N X, MCKAY R I. A new hybrid genetic algorithm for solving the bounded diameter minimum spanning tree problem[C]//2008 IEEE Congress on Evolutionary Computation, June 1-6, 2008, Hong Kong, China. New York: IEEE, 2008: 3128-3134.
[12] PATVARDHAN C, PRAKASH V P, SRIVASTAV A. Fast heuristics for large instances of the Euclidean bounded diameter minimum spanning tree problem[J]. Informatica, 2015, 39(3): 281-292.
[13] GUDMUNDSSON J, HAVERKORT H, PARK S M. Facility location and the geometric minimum-diameter spanning tree[J]. Computational Geometry, 2004, 27(1): 87-106.
[14] BITNER S, DAESCU O. Finding a minimum-sum dipolar spanning tree in R3[C]//The 41st Annual Hawaii International Conference on System Sciences (HICSS'08), January 7-10, 2008, Waikoloa, Big Island, HI, USA. Los Alamitos: IEEE, 2008: 469-469.
[15] AURENHAMMER F, KLEIN R, LEE D T. Voronoi Diagrams and Delaunay Triangulations[M]. Singapore: World Scientific Publishing Company, 2013. |