[1] BAKER K R, SMITH J C. A multiple-criterion model for machine scheduling[J]. Journal of Scheduling, 2003, 6: 7-16. [2] AGNETIS A, MIRCHANDANI P B, PACCIARELLI D, et al. Scheduling problems with two competing agents[J]. Operations Research, 2004, 52(2): 229-242. [3] LEUNG J, MICHAEL P, WAN G H. Competitive two-agent scheduling and its applications[J]. Operations Research, 2010, 58(2): 458- 469. [4] BERTSIMAS D, FARIAS V, TRICHAKIS N. The price of fairness[J]. Operations Research, 2011, 59(1): 17-31. [5] CARAGIANNIS I, KAKLAMANIS C, KYROPOULO M. The efficiency of fair division[J]. Theory of Computing Systems, 2012, 50(4): 589- 610. [6] BRAMS S J, TAYLOR A D. Fair division: From cake-cutting to dispute resolution[J]. Social Justice Research, 1999, 12: 149-162. [7] KALAI E, SMORODINSKY M. Other solutions to Nash’s bargaining problem[J]. Econometrica, 1975(43): 513-518. [8] WANG J Q, FAN G Q, ZHANG Y Q, et al. Two-agent scheduling on a single parallel-batching machine with equal processing time and non-identical job sizes[J]. European Journal of Operational Research, 2017, 258(2): 478- 490. [9] FAN G Q, WANG J Q, LIU Z X. Two-agent scheduling on mixed batch machines to minimize the total weighted makespan[J]. International Journal of Production Research, 2023, 61(1): 237-256. [10] FAN B Q, CHENG T C E. Two-agent scheduling in a flowshop[J]. European Journal of Operational Research, 2016, 252(2): 376-384. [11] AGNETIS A, CHEN B, NICOSIA G, et al. Price of fairness in two-agent single-machine scheduling problems[J]. European Journal of Operational Research, 2019, 276(1): 79- 87. [12] ZHANG Y, ZHANG Z, LIU Z. The price of fairness for a two-agent scheduling game minimizing total completion time[J]. Journal of Combinatorial Optimization, 2020, 44(3): 2104-2122. [13] 张新功,刘甲玉,崔同欣.误工工件个数和最大费用函数的单机双代理KS公平性代价问题[J].重庆师范大学学报:自然科学版,2020,37(1):16-21. [14] 种贝贝,樊保强.最小化总完工时间和总延误的双代理公平性代价问题[J].重庆师范大学学报:自然科学版,2022, 39(1):62-72. [15] GRAHAM R L, LAWLER E L, LENSTRA J K, et al. Optimization and approximation in deterministic sequencing and scheduling: A survey[J]. Annals of Discrete Mathematics, 1979, 5: 287-326. |