[1] CORMEN T H, LEISERSON C E, RIVEST R L, et al. Introduction to Algorithms[M]. Third Edition. Cambridge: MIT Press, 2009. [2] GARMENDIA A I, CEBERIO J, AMENDIBURU A. Applicability of neural combinatorial optimization: A critical view[J]. ACM Transactions on Evolutionary Learning and Optimization, 2024, 4(3): (Article)15. [3] SAHOO S S, PAULUS A, VLASTELICA M, et al. Backpropagation through combinatorial algorithms: Identity with projection works[C/OL]//International Conference on Learning Representations (ICLR 2023), May 1-5, 2023, Kigali, Rwanda.2023:1-15[2024-01-10]. https://openreview.net/forum?id=JZMR727O29. [4] TSCHIATSCHEK S, SAHIN A, KRAUSE A. Differentiable submodular maximization[C]//The 27th International Joint Conference on Artificial Intelligence, July 13-19, 2018, Stockholm, Sweden. San Francisco: IJCAI, 2018: 2731-2738. [5] MENSCH A, BLONDEL M. Differentiable dynamic programming for structured prediction and attention[C]//The 35th International Conference on Machine Learning, July 10-15, Stockholm, Sweden, 2018. Cambridge, Massachusetts: PMLR, 2018: 3462-3471. [6] CHANG C Y, HUANG D A, SUI Y, et al. D3tw: Discriminative differentiable dynamic time warping for weakly supervised action alignment and segmentation[C]//The IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 15-20, 2019, Long Beach, USA. New York: IEEE, 2019: 3546-3555. [7] POGANČIĆ M V, PAULUS A, MUSIL V, et al. Differentiation of blackbox combinatorial solvers[C/OL]//International Conference on Learning Representations, April 26-May 1, 2020: 10941-10959[2024-01-10]. https://openreview.net/forum?id=BkevoJSYPB. [8] ROLÍNEK M, SWOBODA P, ZIETLOW D, et al. Deep graph matching via blackbox differentiation of combinatorial solvers[C]//European Conference on Computer Vision, August 23-28, 2020, Glasgow, UK. Berlin: Springer, 2020: 407-424. [9] AMOS B, KOLTER J Z. Optnet: Differentiable optimization as a layer in neural networks[C]//The 34th International Conference on Machine Learning, August 6-11, 2017, Sydney, Australia. Cambridge, Massachusetts: PMLR, 2017: 136-145. [10] AGRAWAL A, AMOS B, BARRATT S, et al. Differentiable convex optimization layers[C]//Advances in Neural Information Processing Systems, December 8-14, 2019, Vancouver, Canada. New York: Curran Associates, 2019: 9558-9570. [11] WILDER B, DILKINA B, TAMBE M. Melding the data-decisions pipeline: Decision-focused learning for combinatorial optimization[C]//The Thirty-Third Conference on Artificial Intelligence (AAAI), January 27-February 1, 2019, Honolulu, USA. Washington, DC: AAAI, 2019: 1658-1665. [12] FERBER A, WILDER B, DILINA B, et al. MIPaaL: Mixed integer program as a layer[C]//The AAAI Conference on Artificial Intelligence, February 7-12, 2020, New York, NY, USA. Washington, DC: AAAI, 2020: 1504-1511. [13] JANG E, GU S, POOLE B. Categorical reparameterization with Gumbel-softmax[C/OL]//International Conference on Learning Representations, April 24-26, 2017, Toulon, France. 2017: 1920-1931[2024-01-10]. https://openreview.net/forum?id=rkE3y85ee. [14] WOLSEY L. Strong formulations for mixed integer programming: A survey[J]. Mathematical Programming, 1989, 45(1): 173-191. [15] LIN C Y. Rouge: A package for automatic evaluation of summaries[C]//Text Summarization Branches Out, July 25-26, 2004, Barcelona, Spain. Stroudsburg, Pennsylvania: Association for Computational Linguistics, 2004: 74-81. [16] LIU H, GU X, SAMARAS D. A two-step computation of the exact GAN Wasserstein distance[C]//International Conference on Machine Learning, July 10-15, 2018, Stockhold, Sweden. Cambridge, Massachusetts: PMLR, 2018: 3165-3174. |