[1] Vasicek O. An equilibrium characterization of the term structure[J]. Journal of Financial Economics, 1977, 5(2): 177-188. [2] Cox J C, Ingersoll J E, Ross S A. A theory of the term structure of interest rates[J]. Econometrica, 1985, 53(2): 385- 407. [3] Chan K C, Karolyi G A, Longstaff F A, Sanders A B. An empirical comparison of alternative models of the short-term interest rate[J]. Journal of Finance, 1992, 47(3): 1209-1227. [4] Das S R. The surprise element: jumps in interest rates[J]. Journal of Econometrics, 2002, 106(1): 27- 65. [5] Andersen T, Benzoni L, Lund J. Stochastic volatility, mean drift, and jumps in the short-term interest rate[R]. Northwestern University, Evanston, 2004. [6] Johannes M. The statistical and economic role of jumps in continuous-time interest rate models [J]. The Journal of Finance, 2004, 59(1): 227-260. [7] Piazzesi M. Bond yields and the federal reserve[J]. Journal of Political Economy, 2005, 113(2): 311-344. [8] Sorwara G. Estimating single factor jump diffusion interest rate models[J]. Applied Financial Economics, 2011, 21(22): 1679-1689. [9] Beliaeva N, Nawalkha S. Pricing american interest rate options under the jump-extended constant-elasticity-of-variance short rate models[J]. Journal of Banking and Finance, 2012, 36(1): 151-163. [10] 谢赤,邓艺颖.描述利率动态行为的GARCH-JUMP模型[J].数量经济技术经济研究,2003,(3):74-77. [11] 谢赤,陈晖.上海证券交易所R091国债回购利率行为的描述与分析[J].管理学报,2004,(1):53-57. [12] 张金清,周茂彬.中国短期利率波动性效应实证比较研究[J].系统工程学报,2010,25(3):320-325. [13] 范龙振.以1年期储蓄存款利率为状态变量的跳跃型广义Vasicek模型[J].管理科学学报,2010,10(10):69-77. [14] 刘凤琴,王凯娟.CKLS-JUMP过程驱动的利率动态模型:理论估计与实证模拟[J].数量经济技术经济研究,2011,(7):151-161. [15] 谈正达,胡海鸥.短期利率跳跃—扩散模型的非参数门限估计[J].中国管理科学,2012,20(1):8-13. [16] 陈晖,谢赤.包含Jump-Arch过程的利率模型及其应用[J].管理科学学报,2008,11(2):80-90. [17] 余文龙,王安兴.货币市场利率的跳跃行为及影响因素实证分析[J].南方经济,2009,(10):22-35. [18] Kou S G. A jump-diffusion model for option pricing[J]. Management Science, 2001, 48(8): 1086-1101. [19] 吴冲锋,王海成,吴文锋.金融工程研究[M].上海:上海交通大学出版社,2000. |