[1] Donselaar K H V, Peters J, Jong A D. Analysis and forecasting of demand during promotions for perishable items[J]. International Journal of Production Economics, 2016, 172(2): 65-75. [2] Ma S, Fildes R, Huang T. Demand forecasting with high dimensional data: the case of SKU retail sales forecasting with intra-and inter-category promotional information[J]. European Journal of Operational Research, 2016, 249(1): 245-257. [3] Loureiro A L D, Miguéis V L, da Silva Lucas F M. Exploring the use of deep neural networks for sales forecasting in fashion retail[J]. Decision Support Systems, 2018, 114(OCT.): 81-93. [4] 徐琪,刘峥.基于SVM的短生命周期产品供应链双渠道需求预测模型[J].系统管理学报,2014,23(02):255-262,270. [5] Haengju L, Yongsoon E. Discovering heterogeneous consumer groups from sales transaction data[J]. European Journal of Operational Research, 2020, 280: 338-350. [6] Boone T, Ganshan R, Jain A, Sanders N R. Forecasting sales in the supply chain: consumer analytics in the big data era[J]. International Journal of Forecasting, 2019, 35: 170-180. [7] Pivette M, Mueller J E, Crépey, Pascal, et al. Surveillance of gastrointestinal disease in france using drug sales data[J]. Epidemics, 2014, 8: 1-8. [8] Arinaminpathy N, Batra D, Khaparde S, et al. The number of privately treated tuberculosis cases in india: an estimation from drug sales data[J]. The Lancet Infectious Diseases, 2016, 16: 1255-1260. [9] Drewnowski A, Michels S, Leroy D. The impact of crunchy wednesdays, on happy meal fruit orders: analysis of sales data in france, 2009~2013[J]. Journal of Nutrition Education and Behavior, 2017, 49(3): 236-240. [10] 侯小超,张磊,杨晴.基于蒙特卡罗方法的中国中长期煤炭需求预测[J].运筹与管理.2020,29(1):99-105. [11] Sanders Nada R. Big data driven supply chain management: a framework for implementing analytics and turning information into intelligence[M]. Pearson Education, 2014. [12] Ali M M, Babai M Z, Boylan J E, Syntetos A A. Supply chain forecasting when information is not shared[J]. European Journal of Operational Research, 2017, 260(3): 984-994. [13] 黄晓宇,潘嵘,李磊,等.面向时序数据的矩阵分解[J].软件学报,2015,26(9):2262-2277. [14] Yu W, Chavez R, Jacobs M A, Mengying F. Data-driven supply chain capabilities and performance: a resource-based view[J]. Transportation Research Part E: Logistics and Transportation Review, 2018(114): 371-385. [15] Agrahri Himanshu, Ahmed F, Virendra Kumar Verma, Jayant K. Purohit. Benefits of implement big data driven supply chain management: an ISM based model[J]. International Journal of Engineering Science, 2017, 7(5): 11426-11431. [16] 邱萍萍,黄晓宇,曾青松. 考虑边信息的多层贝叶斯需求预测模型[J].计算机集成制造系统,2020,26(第1):191-201. [17] Croston J D. Forecasting and stock control for intermittent demands[J]. Journal of the Operational Research Society, 1972, 23(3): 289-303. [18] Boylan J E, Syntetos A A. The accuracy of a modified croston procedure[J]. International journal of production economics, 2007, 107(2): 511-517. [19] Syntetos A. Forecasting of intermittent demand[D]. Brunel University, 2001. [20] Erik Levén, Segerstedt A. Inventory control with a modified croston procedure and erlang distribution[J]. International Journal of Production Economics, 2004, 90(3): 361-367. [21] Teunter R H, Syntetos A A, Babai M Z. Intermittent demand: linking forecasting to inventory obsolescence[J]. European Journal of Operational Research, 2011, 214(3): 606-615. [22] Nikolopoulos K I, Babai M Z, Bozos K. Forecasting supply chain sporadic demand with nearest neighbor approaches[J]. International Journal of Production Economics, 2016, 177: 139-148. [23] Khashei M, Bijari M, Hejazi S R. Combining seasonal ARIMA models with computational intelligence techniques for time series forecasting[J]. Soft Computing, 2012, 16(6): 1091-1105. [24] Van Ryzin G, Vulcano G. A market discovery algorithm to estimate a general class of nonparametric choice models[J]. Management Science, 2015, 61(2): 281-300. [25] Chong E K P, Stanislaw H. Z·ak. An introduction to optimization, third edition[M]. Hoboken,JOHN WILKY & SONS, 2011. [26] Golub Gene H, Charles F, Van Loan. Matrix computations[M]. Baltimore,Johns Hopkins University Press, 1996. |