[1] BALABANOVIĆ M, SHOHAM Y. Fab: content-based, collaborative recommendation[J]. Communications of the ACM, 1997, 40(3): 66-72. [2] 关菲,周艺,张晗.个性化推荐系统中协同过滤推荐算法优化研究[J].运筹与管理,2022,31(11):9-14. [3] 于翘楚,赵明清,罗雨婷.基于最优权的协同过滤混合推荐算法及应用[J].运筹与管理,2024,33(6):79-84. [4] 王永,刘岽,杜锡为,等.融合注意力机制的自编码器推荐算法[J].运筹与管理,2024,33(2):57-63. [5] BURKE R. Hybrid recommender systems: Survey and experiments[J]. User Modeling and User-Adapted Interaction, 2002, 12: 331-370. [6] 胡春华,陈聪,陈泰任,等.基于自注意力机制的用户实时兴趣多样性推荐[J].系统工程理论与实践,2023,43(9):2579-2594. [7] HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural networks[C]//The 4th International Conference on Learning Representations, May 2-4, 2016, San Juan, Puerto Rico, USA. Puerto Rico: ICLR, 2016: 1-10. [8] LI J, REN P, CHEN Z, et al. Neural attentive session-based recommendation[C]//CIKM’17: ACM Conference on Information and Knowledge Management, November 6-10, 2017, Singapore. New York: ACM, 2017: 1419-1428. [9] GAN M, MA Y. Mapping user interest into hyper-spherical space: A novel poi recommendation method[J]. Information Processing & Management, 2023, 60(2): 103169. [10] WU S, TANG Y, ZHU Y, et al. Session-based recommendation with graph neural networks[C]//The Thirty-Third AAAI Conference on Artificial Intelligence, January 27-February 1, 2019, Honolulu, Hawaii, USA. Palo Alto: AAAI Press, 2019: 346-353. [11] WANG Z, WEI W, CONG G, et al. Global context enhanced graph neural networks for session-based recommendation[C]//The 43rd international ACM SIGIR Conference on Research and Development in Information Retrieval, July 25-30, 2020, Xi’an, China. New York: ACM, 2020: 169-178. [12] LIU L, WANG L, LIAN T. CaSe4SR: Using category sequence graph to augment session-based recommendation[J]. Knowledge-Based Systems, 2021, 212: 106558. [13] XU H, YANG B, LIU X, et al. Category-aware multi-relation heterogeneous graph neural networks for session-based recommendation[J]. Knowledge-Based Systems, 2022, 251: 109246. [14] SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C]//The 10th International Conference on World Wide Web, May 1-5, 2001, Hong Kong, China. New York: ACM, 2001: 285-295. [15] RENDLE S, FREUDENTHALER C, SCHMIDT-THIEME L. Factorizing personalized Markov chains for next-basket recommendation[C]//The 19th International Conference on World Wide Web, April 26-30, 2010, Raleigh, North Carolina, USA. New York: ACM, 2010: 811-820. [16] GAN M, KWON O C. A knowledge-enhanced contextual bandit approach for personalized recommendation in dynamic domains[J]. Knowledge-Based Systems, 2022, 251: 109158. [17] GAN M, ZHANG H. VIGA: A variational graph autoencoder model to infer user interest representations for recommendation[J]. Information Sciences, 2023, 640: 119039. [18] ZHANG T, ZHAO P, LIU Y, et al. Feature-level deeper self-attention network for sequential recommendation[C]//The Twenty-Eighth International Joint Conference on Artificial Intelligence, August 10-16, 2019, Macao, China. Palo Alto: AAAI Press, 2019: 4320-4326. |