[1] Gue K R, Kim B S. Puzzle-based storage systems[J]. Naval Research Logistics(NRL), 2007, 54(5): 556-567. [2] Furmans K, Nobbe C, Schwab M. Future of material handling-modular, flexible and efficient[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011. [3] Alfieri A, Cantamessa M, Monchiero A, et al. Heuristics for puzzle-based storage systems driven by a limited set of automated guided vehicles[J]. Journal of Intelligent Manufacturing, 2012, 23(5): 1695-1705. [4] Gue K R, Furmans K, Seibold Z, et al. GridStore: a puzzle-based storage system with decentralized control[J]. IEEE Transactions on Automation Science and Engineering, 2013, 11(2): 429-138. [5] Uludag O. Grid pick: a high density puzzle based order picking system with decentralized control[D]. Auburn University, 2014. [6] Kota V R, Taylor D, Gue K R. Retrieval time performance in puzzle-based storage systems[J]. Journal of Manufacturing Technology Management, 2015, 26(4): 582-602. [7] Zaerpour N, Yu Y, De Koster R. Optimal two-class-based storage in a live-cube compact storage system[J]. IISE Transactions, 2017, 49(7): 653-668. [8] Zaerpour N, Yu Y, De Koster R. Response time analysis of a live-cube compact storage system with two storage classes[J]. IISE Transactions, 2017, 49(5): 461-480. [9] Zaerpour N, Yu Y, De Koster R. Small is beautiful: a framework for evaluating and optimizing live-cube compact storage systems[J]. Transportation Science, 2015, 51(1): 34-51. [10] Yu H, Yu Y, De Koster R. Dense and fast: achieving shortest unimpeded retrieval with a minimum number of empty cells in puzzle-based storage systems[J]. IISE Transactions, 2021, DOI: 10.1080/24725854.2021.2010151 [11] Mirzaei M, De Koster R, Zaerpour N. Modelling load retrievals in puzzle-based storage systems[J]. International Journal of Production Research, 2017, 55(21): 6423-6435. [12] Azadeh K, Roy D, De Koster R. Robotized warehouse systems: developments and research opportunities[J]. ERIM Report Series Research in Management, 2017. https://ssrn.com/abstract=2888615 or http://dx.doi.org/10.2139/ssrn.2888615. [13] Yalcin A. Multi-agent route planning in grid-based storage systems[D]. Europa-University Oder Frankfurt, 2018. [14] Yalcin A, Koberstrin A, Schocke K O. An optimal and a heuristic algorithm for the single-item retrieval problem in puzzle-based storage systems with multiple escorts[J]. International Journal of Production Research, 2019, 57(1): 143-165. [15] Roy D, Nigam S, De Koster R, et al. Robot-storage zone assignment strategies in mobile fulfillment systems[J]. Transportation Research Part E, Logs and Transportation Review, 2019, 122(FEB.): 119-142. [16] Lamballais T, Roy D, De Koster R. Estimating performance in a robotic mobile fulfillment system[J]. European Journal of Operational Research, 2017, 256(3): 976-990. [17] Yuan Z, Gong Y Y. Bot-in-time delivery for robotic mobile fulfillment systems[J]. IEEE Transactions on Engineering Management, 2017, 64(1): 83-93. [18] Roy D, Krishnamurthy A , Heragu S S , et al. Performance analysis and design trade-offs in warehouses with autonomous vehicle technology[J]. IIE Transactions, 2012, 44(12): 1045-1060. [19] 唐应辉,唐小我.排队论:基础与分析技术[M].科学出版社,2006. [20] 海康威视智能仓储及厂内物流解决方案[EB/OL].https://www.sohu.com/a/316249956_276002, 2019-05-24/2020-07-31. [21] Hausman W H, Schwarz L B, Graves S C. Optimal storage assignment in automatic warehousing systems[J]. Management Science, 1976, 22(6): 629-638. |