运筹与管理 ›› 2022, Vol. 31 ›› Issue (10): 176-182.DOI: 10.12005/orms.2022.0336

• 应用研究 • 上一篇    下一篇

融合情感评论倾向与均衡长尾物品的推荐方法

王谢宁, 李玉蒻, 朱志国, 刘琦卿   

  1. 东北财经大学 管理科学与工程学院,辽宁 大连 116025
  • 收稿日期:2021-01-24 出版日期:2022-10-25 发布日期:2022-11-14
  • 作者简介:王谢宁(1974-),男,宁夏人,副教授,博士,研究方向:智能推荐与数据挖掘;李玉蒻(1996-),女,江西人,硕士研究生,研究方向:商务智能与推荐算法;朱志国(1977-),男,甘肃兰州人,教授,博士,博士生导师,研究方向:社会化商务与商务智能;刘琦卿(2001-),男,江苏徐州人,本科。
  • 基金资助:
    国家自然科学基金面上项目(72172025,71672023,71874025);辽宁省教育厅科学研究经费项目(LN2019J29);东北财经大学自然科学基金培育项目(DUFE202150);辽宁省社科规划基金(L21BTQ001);教育部人文社会科学研究规划基金项目(21YJAZH130)

Recommendation Method Integrating Emotional Comment Tendency and Balancing Long Tail Items

WANG xie-ning, LI yu-ruo, ZHU zhi-guo, LIU qi-qing   

  1. School of Management Science and Engineering, Dongbei University of Finance and Economics, Dalian 116025, China
  • Received:2021-01-24 Online:2022-10-25 Published:2022-11-14

摘要: 推荐领域中已有研究较多的考虑属性维度在评分-物品上来提高算法的准确性,对于用户对产品的真实态度判断不够。论文利用LSTM神经网络模型将用户评论情感得分和用户评分进行融合分析,来计算用户对物品真正的兴趣度;运用向量空间对用户情感进行三分类,借鉴经济学中基尼系数的思想,引入惩罚因子通过对热门物品进行调节,发挥系统的长尾能力从而增加推荐结果的覆盖率,从而实现对热门物品和冷门物品被推荐程度的均衡优化。最后,对情感系数和惩罚系数参数的取值进行实验,得出最优模型参数组合,结果表明,评论的情感因素和惩罚系数对于构建性能更优的推荐模型效果明显,该模型在推荐的准确率和覆盖率上相较其他主流模型更加符合用户需求。

关键词: 个性化推荐, 长尾物品, 评论挖掘, 情感分析, LSTM网络模型

Abstract: In the field of recommendation, many studies have considered the attribute dimension to improve the accuracy of the algorithm in terms of score-item, which is not enough to judge the user’s real attitude towards the product. In this paper, the LSTM neural network model is used to fuse the user comment emotion score and user score to calculate the user's real interest in the item. This paper uses vector space to classify user emotion into three categories, draws lessons from the idea of Gini coefficient in economics, introduces penalty factor, and gives play to the long tail ability of the system by adjusting popular items, so as to increase the coverage of recommendation results, and realize the balanced optimization of the recommended degree of popular items and unpopular items. Finally, experiments are carried out on the values of emotion coefficient and punishment coefficient parameters, and the optimal combination of model parameters is obtained. The results show that the accuracy and coverage of the model are more in line with user needs compared with other mainstream models. It is also proved that the commented emotion factors and punishment coefficient are effective for building a better recommendation model.

Key words: personalized recommendation, long tail items, comment mining, emotion analysis, LSTM network model

中图分类号: