[1] Rafal S, Daniel P. Conditional correlation coefficient as a tool for analysis of contagion in financial markets and real economy indexes based on the synthetic ratio[J]. Procedia Social and Behavioral Sciences, 2016, 220: 452-461. [2] Nicholas A B. The dynamics of the relative global sector effects and contagion in emerging markets equity returns[J]. International Business and Finance, 2017, 39: 433-453. [3] 陶玲,朱迎.系统性金融风险的监测和度量—基于中国金融体系的研究[J].金融研究,2016,(06):18-36. [4] Yacine A S, Julio C D, Roger J A L. Modeling financial contagion using mutually exciting jump processes[J]. Journal of Financial Economics, 2015, 117: 585-606. [5] 曾昭法,左杰.沪港证券市场收益的跳跃与波动溢出关系研究—基于MCMC算法的SVCJ模型[J].中国管理科学,2013,21(S1):334-340. [6] 张德美,周伟.危机环境下金融市场间传染风险的测度与管理[J].金融经济, 2016,(06):138-139. [7] 刘湘云,陈洋阳,韩麦尔.金融市场极端风险溢出效应研究:以金砖国家为例[J]. 广东财经大学学报,2015,(5):78-87. [8] 苟文均,袁鹰,漆鑫. 债务杠杆与系统性风险传染机制—基于CCA模型的分析[J].金融研究,2016,(03):74-91. [9] Matthew G N, Viet H N, Barry R. Risk and return spillovers among the G10 currencies[J]. Journal of Financial Markets, 2016, 31: 43-62. [10] Adrian T, Brunnermeier M. CoVaR. Federal reserve bank of new york staff reports[R]. 2008. 348. [11] Anastassios A D, Georgios P K. Bank ownership, financial segments and the measurement of systemic risk: an application of CoVaR[J]. International Review of Economics and Finance, 2015, 40: 127-140. [12] 王蓉.金融系统性风险的双向溢出效应及其CoVaR模型估计[J].统计与决策,2016,(2):146-148. [13] 张凡.基于Monte Carlo-CoVaR的金融机构风险外溢效应研究[J].统计与决策,2015,(22):152-154. [14] Juan C R,Andrea U. Systemic risk in european sovereign debt markets: a CoVaR-copula approach[J]. Journal of International Money and Finance, 2015, 51: 214-244. [15] 淳伟德,付君实,赵如波.基于混合Copula函数的金融市场非线性极端风险传染研究[J].预测,2015,(4):53-58. [16] 鲍勤,孙艳霞.网络视角下的金融结构与金融风险传染[J].系统工程理论与实践,2014,34(9):2202-2211. [17] Bedford T, Cooke R M. Probability density decomposition for conditionally dependent random variables modeled by vines[J]. Annals of Mathematics and Artificial Intelligence, 2001, 32: 245-268. [18] Riadh A, Mohamed S B A. Relationship between oil, stock prices and exchange rates: a vine copula based GARCH method[J]. North American Journal of Economics and Finance, 2016, 37: 458-471. [19] Zhang B, Wei Y, Yu J. Forecasting VaR and ES of stock index portfolio: a vine copula method[J]. physica a: statistical mechanics and its applications, 2014, 416: 112-124. [20] 刘昆仑.变结构pair copula模型在金融危机传染分析中的应用[J].山东大学学报(理学版),2016,51(6):104-110. [21] Cooke R M, Kurowickac D, Wilson K. Sampling, conditionalizing, counting, merging, searching regular vines[J]. Journal of Multivariate Analysis, 2015, 138: 4-18. [22] 马锋,魏宇,黄登仕.基于vine copula方法的股市组合动态VaR测度及预测模型研究[J].系统工程理论与实践,2015,35(01):26-36. [23] 张国富,杜子平.基于藤copula-贝叶斯网络的中美股票、债券市场非线性相依关系分析[J].系统工程,2016,(07):35-40. [24] Elie B. Return and volatility linkages between oil prices and the Lebanese stock market in crisis periods[J]. Energy, 2015, 89: 365-371. [25] 吴恒煜,胡根华,吕江林.人民币汇率市场化,结构相依与结构突变[J].数理统计与管理,2016,(01):106-121. [26] 何德旭,苗文龙.国际金融市场波动溢出效应与动态相关性[J].数量经济技术经济研究,2015,(11):23-40. [27] 沈悦,戴士伟,罗希.中国金融业系统性风险溢出效应测度—基于GARCH-Copula-CoVaR模型的研究[J].当代经济科学,2014,36(06):30-38+123. [28] 张天顶,张宇.我国上市商业银行风险溢出评价与宏观审慎监管[J].现代财经(天津财经大学学报),2016,(07):80-91. [29] Juan C R, Andrea U. A vine-copula conditional value-at-risk approach to systemic sovereign debt risk for the financial sector[J]. North American Journal of Economics and Finance, 2015, 32: 98-123. [30] Giulio G, Tolga E. Systemic risk measurement: multivariate GARCH estimation of CoVaR[J]. Journal of Banking & Finance, 2013, 37: 3169-3180. [31] 刘向丽,顾舒婷.房地产对金融体系风险溢出效应研究—基于AR-GARCH-CoVaR方法[J].系统工程理论与实践,2014,34(S1):105-111. [32] Bedford T, Cooke R M. Probability density decomposition for conditionally dependent random variables modeled by vines[J]. Annals of Mathematics and Artificial Intelligence, 2001, 32: 245-268. [33] Kurowicka D, Cooke R M. Completion problem with partial correlation vines[J]. Linear Algebra and its Applications, 2006, 418: 188-200. [34] Anastasios P, Claudia C, Harry J, Jakob S. Model selection for discrete regular vine copulas[J]. Computational Statistics and Data Analysis, 2017, 106: 138-152. [35] 吴海龙,方兆本,朱俊鹏.基于R-vine Copula方法的投资组合风险分析[J].投资研究,2013,(10):98-107. |