[1] Carlo H J, Vis I F A , Roodbergen K J. Transport operations in container terminals: literature overview, trends, research directions and classification scheme[J]. European Journal of Operational Research, 2014, 236(1): 1-13. [2] Luo J, Wu Y. Modelling of dual-cycle strategy for container storage and vehicle scheduling problems at automated container terminals[J]. Transportation Research Part E-logistics and Transportation Review, 2015, 79(1): 49-64. [3] Park T J, Choe R, Kim Y H, et al. Dynamic adjustment of container stacking policy in an automated container terminal[J]. International Journal of Production Economics, 2011, 133(1): 385-392. [4] 曾庆成,陈子根,黄玲.集装箱码头同贝同步装卸调度的多阶段混合流水线模型[J].上海交通大学学报,2015,49(4):499-505. [5] 张睿,靳志宏,邢曦文.同贝同步模式下的集装箱装卸作业调度优化[J].系统工程学报,2014,6(29):833-844. [6] Luo J B, Wu Y, Mendes A B. Modelling of integrated vehicle scheduling and container storage problems in unloading process at an automated container terminal[J]. Computers & Industrial Engineering, 2016, 94(1): 32-44. [7] Zaghdoud R, Mesghouni K, Dutilleul S C, et al. A hybrid method for assigning containers to AGVs in container terminal[J]. IFAC-PapersOnLine, 2016, 49(3): 96-103. [8] Angeloudis P, Bell M G H. An uncertainty-aware AGV assignment algorithm for automated container terminals[J]. Transportation Research Part E Logistics & Transportation Review, 2010, 46(3): 354-366. [9] Choe R, Kim J, Ryu K R. Online preference learning for adaptive dispatching of AGVs in an automated container terminal[J]. Applied Soft Computing, 2016, 38: 647-660. [10] 傅正堂,胡志华,宗康.集装箱码头AGV电量非饱和状态下的调度优化[J].大连海事大学学报,2017,43(3):58-62. [11] 张亚琦,杨斌,胡志华.自动化码头AGV充电与作业的集成调度研究[J].计算机工程与应用,2017,53(18):257-262. [12] Braekers K, Caris A, Janssens G K. Integrated planning of loaded and empty container movements[J]. OR spectrum, 2013, 35(2): 457-478. [13] 张建同,宋玉坚,叶春明.多堆场集装箱卡车路径规划的混合蚁群算法[J].工业工程与管理,2017,22(2):89-96. [14] 泰应鹏,邢科新,林叶贵.多AGV路径规划方法研究[J].计算机科学,2017,44(11A):84-87. [15] Ericsson E. Independent driving pattern factors and their influence on fuel-use and exhaust emission factors[J]. Transportation Research Part D, 2001, 6(5): 325-345. [16] Frey H C, Zhang K, Rouphail N M. Fuel use and emissions comparisons for alternative routes, time of day, road grade, and vehicles based on in-use measurements[J]. Environmental Science & Technology, 2008, 42(7): 2483-9. [17] Sun F, Wang J, Cheng R. An extended heterogeneous car-following model accounting for anticipation driving behavior and mixed maximum speeds[J]. Physics Letters A, 2017, 382(7): 489-498. [18] Sivak M, Schoettle B. Eco-driving: Strategic, tactical, and operational decisions of the driver that influence vehicle fuel economy[J]. Transport Policy, 2012, 22(3): 96-99. [19] Golias M, Portal I, Konur D. Robust berth scheduling at marine container terminals via hierarchical optimization[J]. Computers & Operations Research, 2014, 41(1): 412-422. [20] Chen L, Langevin A, Lu Z. Integrated scheduling of crane handling and truck transportation in a maritime container terminal[J]. European Journal of Operational Research, 2013, 225(1): 142-152. [21] Zhang Y, Rong Z, Liu Z X. The integrated scheduling problem in container terminal with dual-cycle operation[J]. International Journal of Simulation Modelling, 2014, 13(3): 335-347. [22] Homayouni S M, Tang S H, Motlagh O. A genetic algorithm for optimization of integrated scheduling of cranes, vehicles, and storage platforms at automated container terminals[J]. Journal of Computational & Applied Mathematics, 2014, 270: 545-556. [23] Ng W C, Mak K L, Zhang Y X. Scheduling trucks in container terminals using a genetic algorithm[J]. Engineering Optimization, 2007, 39(1): 33-47. |