[1] 崔春生,王梦冉,王国成.一种基于可拓学的电子商务内容推荐算法研究[J].运筹与管理,2018,27(6):75-81. [2] Koren K, Bell B, Volinsky C H. Matrix factorization techniques for recommender systems[C]//IEEE Computer, 2009, 42(8): 42-49. [3] Zhang W, Du Y H, Yoshida T, et al. DeepRec: a deep neural network approach to recommendation with item embedding and weighted loss function[J]. Information Sciences, 2019, 470: 121-140. [4] Breese J S, Heckerman D, Kadie C. Empirical analysis of predictive algorithms for collaborative filtering[C]//Fourteenth Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers Inc. 1998.43-52. [5] Nguyen J, Zhu M. Content-boosted matrix factorization techniques for recommender systems[J]. Statistical Analysis & Data Mining, 2013, 6(4): 286-301. [6] Gong S J, Ye H W. Joining user clustering and item based collaborative filtering in personalized recommendation services[C]//Proceedings of International Conference on Industrial and Information Systems, 2009.149-151. [7] Kumar N P, Fan Z. Hybrid User-item based collaborative filtering[J]. Procedia Computer Science, 2015, 60(1): 1453-1461. [8] Sarwar Badrul M. Recommender systems for large-scale e-commerce: scalable neighborhood formation using clustering[C]//Proceedings of the Fifth International Conference on Computer and Information Technology. Vol. 1. 2002. [9] Xia S, ZhaoY, Zhang Y, et al. Optimizations for item-based collaborative filtering algorithm[C]//Proceedings of Natural Language Processing and Knowledge Engineering(NLP-KE), 2010. 1-5. [10] Gong S J. Joining case-based reasoning and Item-based collaborative filtering in recommender systems[C]//Proceedings of the Second International Symposium on Electronic Commerce and Security, 2009. 40-42. [11] Chen S, Peng Y. Matrix factorization for recommendation with explicit and implicit feedback[J]. Knowledge-Based Systems, 2018. [12] Xue H J, Dai X Y, Zhang J, et al. Deep matrix factorization models for recommender systems[C]//International Joint Conference on Artificial Intelligence. AAAI Press, 2017. 3203-3209. [13] Dhillon I S. Co-clustering documents and words using bipartite spectral graph partitioning[C]//ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2001. 269-274. [14] Golub G H, Loan V, Charles f: matrix computations(third edition)[M]. Johns Hopkins University Press, 1996. [15] Zhang W, Yoshida T, Tang X J, Wang Q. Text clustering using frequent item sets[J]. Knowledge-based Systems, 2010, 23(5): 379-388. [16] Savas B, Dhillon I S. Clustered matrix approximation[J]. SIAM Journal on Matrix Analysis and Applications, 2016, 37(4): 1531-1555. [17] Phuong D, Tu M P. Collaborative filtering by multi-task learning[C]// IEEE International Conference on Research, Innovation and Vision for the Future, 2008.227-232. [18] Vavasis S A. On the complexity of nonnegative matrix factorization[J]. SIAM Journal on Optimization, 2009, 20(3): 1364-1377. [19] Zhang W, Du Y H, Yang Y, et al. DeRec: a data-driven approach to accurate recommendation with deep learning and weighted loss function[J]. Electronic Commerce Research and Applications, 2018, 31: 12-23. [20] Verstrepen K, Bhaduriy B, Cule B, et al. Collaborative filtering for binary, positive-only data[C]// In Proceedings of the 23rd ACM SIGKDD Conference, 2017.1-21. [21] 陈洁,潘郁,张振海,等.基于用户实时行为的Slope One模型与算法[J].运筹与管理,2015,24(1):89-92 |