[1] Ibarra O H, Kim C E. Fast approximation algorithms for the knapsack and sum of subset problems[J]. Journal of the ACM(JACM), 1975, 22(4): 463-468. [2] Pisinger D, Saidi A. Tolerance analysis for 0-1 knapsack problems[J]. European Journal of Operational Research, 2017(258): 866-876. [3] Zhou Y Q, Chen X,Zhou G. An improved monkey algorithm for a 0-1 knapsack problem[J]. Applied Soft Computing, 2016(38): 817-830. [4] Buayen P, Werapun J. Parallel time-space reduction by unbiased filtering for solving the 0/1-Knapsack problem[J]. Journal of Parallel and Distributed Computing, 2018, 122(DEC.): 195-208. [5] Federico D C, Ulrich P, Rosario S. Approximating the 3-period incremental knapsack problem[J]. Journal of Discrete Algorithms, 2018(11): 55-69. [6] 刘雪静,贺毅朝,路凤佳,等.基于差分演化策略的混沌乌鸦算法求解折扣{0-1}背包问题[J].计算机应用,2018,38(1):137-145,181. [7] Mauro D A, Delorme M, Manuel I, et. Mathematical models and decomposition methods for the multiple knapsack problem[J]. European Journal of Operational Research, 2019(274): 886-899. [8] 杨雪,董红斌,董宇欣.改进的量子粒子群优化算法对多维多选择背包问题的求解[J].吉林大学学报(理学版),2018,11(56):1461-1468. [9] Han X, Kawase Y, Makino K. Randomized algorithms for online knapsack problems[J]. Theoretical Computer Science,2015(562): 395-405. [10] Marchetti-Spaccamela A, Vercellis C. Stochastic on-line knapsack problems[J]. Mathematical Programming, 1995, 68(1-3): 73-104. [11] Iwama K, Taketomi S. Removable online knapsack problems[J]. Lecture Notes in Computer Science, 2002, 2380: 293-305. [12] Han X, Makino K. Online removable knapsack with limited cuts[J]. Theoretical Science, 2010(411): 3956-3964. [13] Han X, Kawase Y, Makino K. Online unweighted knapsack problem with removal cost[J]. Algorithmica, 2014, 70(1): 76-91. [14] 苏兵,林刚,郭清娥.带有信息有限预知的片堵塞加拿大旅行者问题[J].系统工程理论与实践,2016(10):2673-2679. [15] 苏兵,兰小毅.有限预知信息的可恢复加拿大旅行者问题[J].系统工程,2009(9):102-107. |