[1] 杨新兴,冯丽华,尉鹏.大气颗粒物PM2.5及其危害[J].前沿科学,2012,(1):24-33. [2] 谢元博,陈娟,李巍.雾霾重污染期间北京居民对高浓度PM2.5持续暴露的健康风险及其损害价值评估[J].环境科学,2014,35(1):1-8. [3] 付倩娆.基于多元线性回归的雾霾预测方法研究[J].计算机科学,2016,43(S1):526-528. [4] 郎艺超,肖璐,George Christakos.基于SARIMA模型和普通Kriging法对杭州市主城区PM2.5短期预测和制图[J].环境科学学报,2018,(1):62-70. [5] Voukantsis D, Karatzas K, Kukkonen J. Intercomparison of air quality data using principal component analysis, and forecasting of PM10 and PM2.5 concentrations using artificial neural networks, in thessaloniki and helsinki[J]. Science of the Total Environment, 2011, 409(7): 1266-1276. [6] Wu L F, Nu L, Yang Y J. Prediction of air quality indicators for the beijing-tianjin-hebei region[J]. Journal of Cleaner Production, 2018, 196: 682-687. [7] 王志祥.淮安市PM2.5的分布特征与灰色预测模型[J].数学的实践与认识,2018,48(5):286-291. [8] 熊萍萍,袁玮莹,叶琳琳,邹俊秀.灰色MGM(1,m,N)模型的构建及其在雾霾预测中的应用[J].系统工程理论与实践,2020,40(3):771-782. [9] 刘思峰,党耀国,方志耕等.灰色系统理论及其应用(第五版)[M].北京:科学出版社,2010. [10] 王正新,党耀国,刘思峰,练郑伟.GM(1,1)幂模型求解方法及其解的性质[J].系统工程与电子技术,2009,31(10):2380-2383. [11] 陈兴怡,党耀国.含时滞参数的灰色GM(1,1,τ)模型及其应用[J].数学的实践与认识,2015,45(4):94-100. [12] 李鹏,朱建军.直觉模糊GM(1,1)模型及其在灰色发展决策的应用[J].运筹与管理,2017,26(11):87-92. [13] Zeng B, Li C. Improved multi-variable grey forecasting model with a dynamic background-value coefficient and its application[J]. Computers & Industrial Engineering, 2018, 118: 278-290. [14] Wang Z X, Hao P. An improved grey multivariable model for predicting industrial energy consumption in China[J]. Applied Mathematical Modelling, 2016, 40: 5745-5758. [15] Zeng B, Luo C M, Liu S F, Bai Y, Li C. Development of an optimization method for the GM(1,N) model[J]. Engineering Applications of Artificial Intelligence, 2016, 55: 353-362. [16] Wu L F, Zhang Z Y. Grey multivariable convolution model with new information priority accumulation[J]. Applied Mathematical Modelling, 2018, 62: 595-604. [17] Ding S. A novel discrete grey multivariable model and its application in forecasting the output value of China’s high-tech industries[J]. Computers & Industrial Engineering, 2019, 127: 749-760. [18] Ma X, Xie M, WuW Q, Zeng B, Wang Y, Wu X X. The novel fractional discrete multivariate grey system modeland its applications[J]. Applied Mathematical Modelling, 2019, 70: 402-424. [19] 张可,曲品品,张隐桃.时滞多变量离散灰色模型及其应用[J].系统工程理论与实践,2015,35(8):2092-2103. [20] 毛树华,高明运,肖新平.分数阶累加时滞GM(1,N,τ)模型及其应用[J].系统工程理论与实践,2015,35(2):430-436. [21] 曾波.基于核和灰度的区间灰数预测模型[J].系统工程与电子技术,2011,33(4):821-824. [22] 党耀国,叶璟.基于残差思想的区间灰数预测优化模型[J].控制与决策,2018, 33(6):1147-1152. [23] 石佳.基于区间灰数的GM(1,N)优化模型在雾霾中的应用研究[D].南京信息工程大学,2020. [24] Xiong P P, He Z Q, Chen S T, Peng M. A novel GM(1,N)model based on interval gray number and its application to research on smog pollution[J]. Kybernetes, 2020, 49(3): 753-778. [25] Lewis C D. Industrial and business forecasting methods: a practical guide to exponential smoothing and curve fitting[M]. Butterworth Scientific, 1982. [26] Xie Y Y, Zhao B, Zhang L, Luo R. Spatiotemporal variations of PM2.5 and PM10 concentrations between 31 Chinese cities and their relationships with SO2, NO2, CO and O3[J]. Particuology, 2015, 20: 141-149。 |