Multi-objective Performance Prediction of Turboshaft Engine Based on Bayesian Network
WANG Ning1, WANG Yuhang2, CAI Zhiqiang2, ZHANG Shuai2
1.School of Automobile, Chang'an University, Xi'an 710064, China; 2. School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
WANG Ning, WANG Yuhang, CAI Zhiqiang, ZHANG Shuai. Multi-objective Performance Prediction of Turboshaft Engine Based on Bayesian Network[J]. Operations Research and Management Science, 2023, 32(3): 177-183.
[1] 乞征,向克胤,刘彦雪.涡轴发动机技术发展研究综述[J].飞航导弹,2016(7):83-86. [2] 邹望之,郑新前.航空涡轴发动机发展趋势[J].航空动力学报,2019,34(12):2577-2588. [3] MA J, SU H, ZHAO W L, LIU B. Predicting the remaining useful Life of an aircraft engine using a stacked sparse autoencoder with multilayer self-learning[J]. Complexity, 2018, 2018(5): 1-13. [4] ZHONG S S, LUO H, LIN L, et al. An improved correlation-based anomaly detection approach for condition monitoring data of industrial equipment[C]//2016 IEEE International Conference on Prognostics and Health Management (ICPHM), June 20-22, 2016, Ottawa, Ontario, Canada. Piscataway: IEEE, 2016: 1-5. [5] YUAN M, WU Y T, LIN L. Fault diagnosis and remaining useful life estimation of aero engine using LSTM neural network[C]//2016 IEEE international conference on aircraft utility systems (AUS), October 10-12, 2016, Beijing, China. Piscataway: IEEE, 2016: 135-140. [6] SALEHI A, MONTAZERI-GH M. Black box modeling of a turboshaft gas turbine engine fuel control unit based on neural NARX[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2018, 233(3): 949-956. [7] KIAKOJOORI S, KHORASANI K. Dynamic neural networks for gas turbine engine degradation prediction, health monitoring and prognosis[J]. Neural Computing and Applications, 2016, 27(8): 2157-2192. [8] LIU Z G, CAI Z J, TAN X M. Forecasting research of aero-engine rotate speed signal based on ARMA model[J]. Procedia Engineering, 2011, 15: 115-121. [9] 陈果.用结构自适应神经网络预测航空发动机性能趋势[J].航空学报,2007,28(3):535-539. [10] 胡春玲.贝叶斯网络研究综述[J].合肥学院学报(自然科学版),2013,23(1):33-40. [11] 黄影平.贝叶斯网络发展及其应用综述[J].北京理工大学学报,2013,33(12):1211-1219. [12] 范丽先,张紫梦,尹静波.利用贝叶斯网络提高港口国检查效率[J].运筹与管理,2019,28(8):107-115. [13] MARTÍN J, RIVAS T, MATÍAS J M, et al. A bayesian network analysis of workplace accidents caused by falls from a height[J]. Safety Science, 2009, 47(2): 206-214. [14] FRIEDMAN N, GEIGER D, GOLDSZMIDT M. Bayesian network classifiers[J]. Machine Learning, 1997, 29(2): 131-163. [15] GIBAJA E, VENTURA S. A Tutorial on multi-label learning[J]. ACM Computing Surveys, 2015, 47(3): 1-38.