[1] DIABAT A, THEODOROU E. An Integrated quay crane assignment and scheduling problem[J]. Computers & Industrial Engineering, 2014, 73(7): 115-123. [2] ZHEN L. Tactical berth allocation under uncertainty[J]. European Journal of Operational Research, 2015, 247(3): 928-944. [3] WANG T, WANG X, MENG Q. Joint berth allocation and quay crane assignment under different carbon taxation policies[J]. Transportation Research Part B: Methodological, 2018, 117: 18-36. [4] ZHEN L, WANG K, WANG S, et al. Tug scheduling for hinterland barge transport: A branch-and-price approach[J]. European Journal of Operational Research, 2018, 265: 119-132. [5] 刘志雄,李俊,邵正宇,等.拖轮动态调度的混合演化策略算法设计[J].计算机工程与设计,2016,37(2):519-524,529. [6] 徐奇,李娜,靳志宏.考虑多阶段共用平行机特征的拖轮作业模式优化[J].运筹与管理,2014,23(5):178-186. [7] KANG L J, MENG Q, TAN K C. Tugboat scheduling under ship arrival and tugging process time uncertainty[J]. Transportation Research Part E: Logs and Transportation Review, 2020, 144: 102125. [8] 李伯棠,王智利,周海英,等.港口拖轮调度模糊规划优化模型及算法[J].计算机集成制造系统,2021,27(5):1518-1530. [9] 郑红星,徐海栋,曹红雷.复式航道港口拖轮配置仿真优化[J].重庆交通大学学报(自然科学版),2017,36(8):102-109. [10] WEI X Y, JIA S, MENG Q, et al. Tugboat scheduling for container ports[J]. Transportation Research Part E: Logs and Transportation Review, 2020, 142: 102071. [11] 王巍,赵宏,李强.面向多停泊基地的港口拖轮调度优化研究[J].计算机工程与应用,2013,49(13):8-12,35. [12] YUAN Y, XU H. Multi-objective flexible job shop scheduling using memetic algorithms[J]. IEEE Transactions on Automation Science and Engineering, 2015, 12(1): 336-353. [13] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multi-objective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. |