[1] GHYSELS E, SINKO A, VALKANOV R. MIDAS regressions: Further results and new directions[J]. Econometric Reviews, 2007, 26(1): 53-90. [2] ENGLE R F, GHYSELS E, SOHN B. Stock market volatility and macroeconomic fundamentals[J]. Review of Economics and Statistics, 2013, 95(3): 776-797. [3] ASGHARIAN H, HOU A J, JAVED F. The importance of the macroeconomic variables in forecasting stock return variance: A GARCH-MIDAS approach[J]. Journal of Forecasting, 2013, 32(7): 600-612. [4] CONRAD C, LOCH K. Anticipating long-term stock market volatility[J]. Journal of Applied Econometrics, 2015, 30(7): 1090-1114. [5] PAN Z, WANG Y, WU C, et al. Oil price volatility and macroeconomic fundamentals: A regime switching GARCH-MIDAS model[J]. Journal of Empirical Finance, 2017, 43: 130-142. [6] ANDERSEN T G, BOLLERSLEV T, DIEBOLD F, et al. Modeling and forecasting realized volatility[J]. Econometrica, 2003, 71(2): 579-625. [7] BOUDT K, ZHANG J. Jump robust two time scale covariance estimation and realized volatility budgets[J]. Quantitative Finance, 2015, 15(6): 1041-1054. [8] 刘凤根,吴军传,杨希特,等.基于混频数据模型的宏观经济对股票市场波动的长期动态影响研究[J].中国管理科学,2020,28(10):65-76. [9] ENGLE R F, RANGEL J G. The spline-GARCH model for low-frequency volatility and its global macroeconomic causes[J]. The Review of Financial Studies, 2008, 21(3): 1187-1222. [10] HANSEN P R, LUNDE A, NASON J M. The model confidence set[J]. Econometrica, 2011, 79(2): 453-497. [11] HANSEN P R, LUNDE A. Consistent ranking of volatility models[J]. Journal of Econometrics, 2006, 131(1-2): 97-121. [12] CAMPBELL J Y, THOMPSON S B. Predicting excess stock returns out of sample: Can anything beat the historical average?[J]. The Review of Financial Studies, 2008, 21(4): 1509-1531. [13] 刘丽萍,马丹,白万平.大维数据的动态条件协方差阵的估计及其应用[J].统计研究,2015,32(6):105-112. |