[1] 景楠,史紫荆,舒毓民.基于注意力机制和CNN-LSTM 模型的沪铜期货高频价格预测[J].中国管理科学,2020,13(8): 1-13. [2] 姚金海.基于ARIMA与信息粒化SVR组合的股指预测研究[J].运筹与管理,2022,31(5): 214-220. [3] 王书平,胡爱梅,吴振信.基于多尺度组合模型的铜价预测研究[J].中国管理科学,2014,22(8): 21-28. [4] 沈欣宜,李旭,沈虹.基于机器学习的铜期货价格预测分析[J].扬州大学学报(自然科学版),2021,24(5): 1-7. [5] 王玥,周海涛,岳婷雨,等.基于百度指数的肺结核预测模型研究[J].疾病监测,2023,38(1): 16. [6] 李凤岐,李光明.基于搜索行为的经济指标预测方法[J].计算机工程与应用,2017,53(6): 215-222. [7] ZHANG C, LIU H, CHEN Z, et al. Tourism forecast based on Web search data and sentiment analysis of social network[C]//The 2nd International Conference on Computing and Data Science, January 28-30, 2021, University of Stanford, California, United States. New York: Association for Computing Machinery, 2021: 16. [8] YANG Y, GUO J, SUN S, et al. Forecasting crude oil price with a new hybrid approach and multi-source data[J]. Engineering Applications of Artificial Intelligence, 2021, 101: 104217. [9] 陆敏,赵湘莲,李岩岩.基于系统聚类的中国碳交易市场初步研究[J].软科学,2013,27(3): 4043. [10] AWAD M, KHANNA R. Support vector regression[M]//AWAD M, KHANNA R. Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers. Berkeley: Apress, 2015: 6780. [11] HU J, LIU B, PENG S. Forecasting salinity time series using RF and ELM approaches coupled with decomposition techniques[J]. Stochastic Environmental Research and Risk Assessment, 2019, 33(4): 1117-1135. [12] JIANG Q, YAN X. Parallel PCA-KPCA for nonlinear process monitoring[J]. Control Engineering Practice, 2018, 80: 17-25. [13] HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1-3): 489-501. [14] DIEBOLD F X, MARIANO R S. Comparing predictive accuracy[J]. Journal of Business & Economic Statistics, 2002, 20(1): 134-144. |