[1] ZADEH M S, KATEBI Y, DONIAVI A. A heuristic model for dynamic flexible job shop scheduling problem considering variable processing times[J]. International Journal of Production Research, 2019, 57(10): 3020-3035. [2] WU X, LI J, SHEN X, et al. A NSGA-III for solving dynamic flexible job shop scheduling problem considering deterioration effect[J]. IET Collaborative Intelligent Manufacturing, 2020, 2(4): 22-33. [3] 姜飞,李国昊,陶斯安.基于GWO的多目标柔性作业车间动态调度研究[J].机械设计与制造工程,2022,51(5):90-94. [4] 任玺悦,王修贤,耿娜,等.考虑多急件到达的作业车间重调度研究[J].工业工程与管理,2022,27(3):74- 83. [5] 林时敬,徐安军,刘成,等.基于深度强化学习的炼钢车间天车调度方法[J].中国冶金,2021,31(3):37- 43. [6] 刘亚辉,申兴旺,顾星海,等.面向柔性作业车间动态调度的双系统强化学习方法[J].上海交通大学学报,2022,56(9):1262-1275. [7] WANG H, CHENG J, LIU C, et al. Multi-objective reinforcement learning framework for dynamic flexible job shop scheduling problem with uncertain events[J]. Applied Soft Computing Journal, 2022, 131: 109717. [8] SHAHRABI J, ADIBI M A, MAHOOTCHI M. A reinforcement learning approach to parameter estimation in dynamic job shop scheduling[J]. Computers & Industrial Engineering, 2017, 110: 75- 82. [9] WANG Y. Adaptive job shop scheduling strategy based on weighted Q-learning algorithm[J]. Journal of Intelligent Manufacturing, 2020, 31(2): 417- 432. [10] 赵也践,王艳红,张俊,等.改进Q学习算法在作业车间调度问题中的应用[J].系统仿真学报,2022,34(6):1247-1258. [11] LUO S. Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning[J]. Applied Soft Computing, 2020, 91(21): 106208. [12] 钟敬伟,石宇强.基于DQN的智能工厂作业车间调度[J].现代制造工程,2021(9):17-23+93. [13] GUI Y, TANG D, ZHU H, et al. Dynamic scheduling for flexible job shop using a deep reinforcement learning approach[J]. Computers & Industrial Engineering, 2023, 180: 109255. [14] LIU R, PIPLANI R, TORO C. Deep reinforcement learning for dynamic scheduling of a flexible job shop[J]. International Journal of Production Research, 2022, 60(13): 4049- 4069. |