CHEN Wanzhi, CUI Daiyu. Metro Ridership Prediction Model by GCN and Improved Informer[J]. Operations Research and Management Science, 2025, 34(8): 206-211.
[1] 朱敏清,高洁,崔洪军,等.基于GTWR的站域建成环境对城市轨道交通客流量的时空影响[J].北京工业大学学报,2024,50(6):724-732. [2] 张矢宇,杨云超,杨宇昊.考虑客流时变特性的列车时刻表优化方法[J].运筹与管理,2023,32(8):44-50. [3] 孙景云,于婷,何林芸.基于网络搜索信息的多模态数据驱动航空客流集成预测[J].运筹与管理,2023,32(3):155-162. [4] VIDYA G S, HARI V S. LSTM network integrated with particle filter for predicting the bus passenger traffic[J]. Journal of Signal Processing Systems, 2023, 95(2): 161-176. [5] WU J, HE D, XIANG L W, et al. Learning spatial-temporal pairwise and high-order relationships for short-term passenger flow prediction in urban rail transit[J]. Expert Systems with Applications, 2024, 245(7): 123091. [6] GUO S N, LIN Y F, WAN H Y, et al. Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(11): 5415-5428. [7] YE X, FANG S, SUN F, et al. Meta graph transformer: A novel framework for spatial-temporal traffic prediction[J]. Neurocomputing, 2022, 491: 544-563. [8] ZHANG Z H, HAN Y, PENG T X, et al. A comprehensive spatio-temporal model for subway passenger flow prediction[J]. ISPRS International Journal of Geo-Information, 2022, 11(6): (Article)341. [9] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J/OL]. arXiv, 2023: 1706.03762v7[2024-07-01]. https://arxiv.org/pdf/1706.03762v7. [10] HU H X, HU Q, TAN G, et al. A multi-layer model based on transformer and deep learning for traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(1): 443- 451. [11] LUO Q, HE S, HAN X, et al. LSTTN: A long-short term transformer-based spatiotemporal neural network for traffic flow forecasting[J]. Knowledge-Based Systems, 2024, 293: 111637. [12] ZHOU H, ZHANG S, PENG J, et al. Informer: Beyond efficient transformer for long sequence time-series forecasting[C]//The 35th AAAI Conference on Artificial Intelligence, February 2-9, 2021, Online. Palo Alto: AAAI, 2021: 11106-11115. [13] NIE Y Q, NGUYEN N H, SINTHONG P, et al. A time series is worth 64 words: Long-term forecasting with transformers[J/OL]. arXiv, 2023: 2211.14730v2[2024-07-01]. https://arxiv.org /pdf/2211.14730v2. [14] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[J/OL]. arXiv, 2017: 1609.02907v4[2024-07-01]. https://arxiv.org /pdf/1609.02907v4. [15] 毛慧慧,赵小乐,杜圣东,等.基于时序知识图谱嵌入的短期地铁客流量预测[J].计算机科学,2023,50(7):213-220.