[1] 郑义建.线性规划问题最优解集的结构与仅有唯一最优解的充分条件[J].应用数学与计算数学学报,1992,6(1):42-46. [2] 张新辉.有无穷多最优解线性规划问题[J].运筹与管理,1995,4(1):1-4. [3] 李军.线性规划无穷多最优解的讨论[J].运筹与管理,1999,8(1):87-92. [4] 薛声家,左小德.确定线性规划全部最优解的方法[J].数学的实践与认识,2005,35(1):101-105. [5] 魏权龄,闫洪.广义最优化理论和模型[M].北京:科学出版社,2003. [6] Mangasarian O L. A simple characterization of solution sets of convex programs[J]. Operations Research Letters, 1988, 8(1): 21-26. [7] Burke J V, Ferris M C. Characterization of solution sets of convex programs[J]. Operations Research Letters, 1991, 10(1): 57-60. [8] Jeyakumar V, Yang X Q. On characterizing the solution sets of pseudolinear programs[J]. J. Optimization Theory and Applications, 1995, 87: 747-755. [9] Lu Qihui, Zeng Lifei. Characterizations of solution sets of pseudolinear programs[J]. Journal of Fudan University, 2004, 43(1): 130-134. [10] Xue Shengjia. Determining the optimal solution set for linear fractional programming[J]. J. Systems Engineering and Electronics, 2002, 13(3): 40-45. [11] Xue Shengjia. On alternative optimal solutions to quasimonotonic programming with linear constraints[J]. Applied Mathematics J. Chinese Univ.Ser.B, 2007, 22(1): 119-125. [12] Avriel M. Nonlinear Programming: Analysis and Methods[M]. New Jersey: Prentice Hall Ins.1976. [13] Yang X Q. Vector variational inequality and Vector pseudolinear optimization[J]. J. Optimization Theory and Applications, 1997, 95: 729-734. [14] Bazaraa M S, Sherali H D, Shetty C M. Nonlinear programming : Theory and algorithms ,3rd Edition[M]. New York: John Wiley & Sons, 2006. |