[1] Bilbao J M, Driessen T S H, Losada A J, et al. The shapley value for games om matroids: the static model[J]. Mathematical Methods of Operations Research, 2001, 53(2): 333-348. [2] Bilbao J M, Driessen T S H, Losada A J, et al. The shapley value for games on matroids: the dynamic model[J]. Mathematical Methods of Operations Research, 2002, 56(2): 287-301. [3] Algaba E, Bilbao J M, Van den Brink R, et al. Axiomatizations of the shapley value for cooperative games on antimatroids[J]. Mathematical Methods of Operations Research, 2003, 57(1): 49-65. [4] Algaba E, Bilbao J M, Van den Brink R, et al. An axiomatization of the Banzhaf value for cooperative games on antimatroids[J]. Mathematical Methods of Operations Research, 2004, 59(1): 147-166. [5] Shapley L S. A value for n-person game, in: H. Kuhn, A. tucker(Eds.), contributions to the theory of Games[M]. Vol. 2, Princeton University Press, Princeton, NJ, 1953. 307-317. [6] Banzhaf J. Weighted voting does not work: a mathematical analysis[J]. Rutgers Law Rev. 1965, 19: 317-343. [7] 何华,孙浩.拟阵上合作对策的单调解[J].应用数学学报,2008,31(1):52-60. [8] 孙浩,何华.拟阵上动态合作对策的单调解[J].高校应用数学学报,2009,24(1):102-110. [9] Young P. Monotonic solutions of cooperative games[J]. International Journal of Game Theory, 1985, 14(2): 65-72. |