Operations Research and Management Science ›› 2014, Vol. 23 ›› Issue (2): 139-144.

• Theory Analysis and Methodology Study • Previous Articles     Next Articles

Multi-objective Two-person Zero-sum Matrix Game Based on Intuitionistic Set

ZHOU Xiao-guang, GAO Xue-dong, ZHANG Xiao-dong   

  1. Dongling School of Economics and Management, Beijing University of Science and Technology,Beijing 100083, China
  • Received:2012-12-06 Online:2014-02-25

直觉模糊多目标二人零和矩阵对策

周晓光, 高学东, 张晓冬   

  1. 北京科技大学 东凌经济管理学院,北京 100083
  • 作者简介:周晓光(1977-),男,湖南汨罗人,副教授,博士,研究方向: 管理决策与对策。
  • 基金资助:
    国家自然科学基金资助项目(71272161/G021102,71171019/G0110);中央高校基本科研业务费专项资金资助项目(FRF-BR-13-031)

Abstract: The research of matrix game is a basic approach and important means for the research of game theory. The multi-objective two-person zero-sum matrix game, whose payoff values are intuitionistic fuzzy numbers, is proposed based on the theories of intuitionistic fuzzy multi-objective decision making and fuzzy game. The model of multi-objective two-person zero-sum matrix game based on intuitionistic set is introduced at first. Then the linear program method of intuitionistic multi-objective two-person zero-sum matrix game is presented. Finally, an example is given to illustrate the proposed method. The results show that the equilibrium strategy and equilibrium solution of the game can be easily acquired by the proposed method.

Key words: intuitionistic set, multi-objective game, matrix game, linear programming

摘要: 研究矩阵对策是深入研究对策理论的一个基本途径和重要手段。根据直觉模糊多目标决策和模糊对策理论,研究了支付值为直觉模糊值的多目标二人零和矩阵对策。首先介绍了基于直觉模糊集的多目标二人零和矩阵对策模型,接着提出了求解直觉模糊多目标二人零和矩阵对策的线性规划方法。最后以数例说明本文提出的方法。结果表明该方法能方便地得到对策的均衡策略和均衡解。

关键词: 直觉模糊集, 矩阵对策, 多目标对策, 线性规划

CLC Number: