Operations Research and Management Science ›› 2014, Vol. 23 ›› Issue (2): 220-225.

• Application Research • Previous Articles     Next Articles

Bayesian Unit Root Test on Quantile Autoregressive Process Based on MCMC Algorithms

ZENG Hui-fang1, XIONG Pei-yin2, XIANG Guo-cheng1   

  1. 1. College of Business, Hunan University of Science and technology, Xiangtan 411201, China;
    2. College of Information and Engineering , Hunan University of Science and technology, Xiangtan 411201, China
  • Received:2012-06-22 Online:2014-02-25

基于MCMC的分位AR模型的贝叶斯单位根检验研究

曾惠芳1, 熊培银2, 向国成1   

  1. 1.湖南科技大学 商学院,湖南 湘潭 411201;
    2.湖南科技大学 信息与电气工程学院,湖南 湘潭 411201
  • 作者简介:曾惠芳(1981-),女,湖南省邵阳人,讲师,博士,主要研究方向:贝叶斯计量经济,分位回归理论;熊培银(1979-),男,安徽省宿州人,讲师,硕士,主要研究方向:数值计算;向国成(1965-),男,湖南岳阳人,博士,教授,研究方向:农业与农村经济。
  • 基金资助:
    国家自然科学基金资助项目(41301421);教育部哲学社会科学研究重大课题攻关项目(11JZD018)

Abstract: Classical tests for unit roots have been criticized for their unusual asymptotic theory leading to disconnected confidence intervals and their lack of power in small samples. We develop a simple and efficient MCMC algorithm for fitting the dynamic quantile regression model based on a location-scale mixture representation of the asymmetric Laplace distribution. Moreover, we exploit the maximum posterior interval for different prior distribution. The simulation result shows that Bayesian quantile regression method is a complete and robust method to test non-stationary for time series. An empirical application of the method modeling the China CPI index dynamic illustrates that there exists stock on upper tail of the distribution but not lower tail.

Key words: quantile, AR models, unit root, bayes factor

摘要: 针对频率统计方法存在不连续的置信区间以及在小样本情况下检验势比较低的问题。把非对称Laplace分布表示成正态分布和指数分布的线性组合,推导了不同先验分布情况下参数的最大后验密度置信区间,并构造了分位回归单位根检验的贝叶斯因子,实现了对非平稳时间序列的局部单位根检验。仿真分析表明贝叶斯分位回归方法是一种稳健全面的单位根检验方法。对我国居民消费价格指数的实证研究发现,我国居民消费价格指数表现出局部的持续性,在分布的下尾部不受普通冲击的影响,但在分布的上尾部受普通冲击的影响。

关键词: 分位数, AR模型, 单位根, 贝叶斯因子

CLC Number: