[1] Knight K. Limit theory for autoregressive-parameter estimates in an infinite variance random walk[J]. Canadian Journal of Statistics, 1989, 17: 261-278. [2] Weiss A. Estimating nonlinear dynamic models using least absolute error estimation[J]. Econometric Theory, 1991, 7(01): 46-68. [3] Koul H, Saleh A K. Autoregression quantiles and related rank-scores processes[J]. The Annals of Statistics, 1995, 23(2): 670-689. [4] Koul H, Mukherjee K. Regression quantiles and related processes under long range dependent errors[J]. Journal of Multivariate Analysis, 1994, 51: 318-337. [5] Herce M. Asymptotic theory of LAD estimation in a unit root process with finite variance errors[J]. Econometric Theory, 1996, 12: 129-153. [6] Hasan M N, Koenker R. Robust rank tests of the unit root hypothesis[J]. Econometrica, 1997, 65(1): 133-161. [7] Hallin M, Jureckova J. Optimal tests for autoregressive models based on autoregression rank scores[J]. The Annals of Statistics, 1999, 27: 1385-1414. [8] Enders W, Granger C. Unit root tests and asymmetric adjustment with an example sing the term structure of interest rates[J]. Journal of Business and Economic Statistics, 1998, 16(3): 304-311. [9] Beaudry P, Koop G. Do recessions permanently change output[J]. Journal of Monetary Economics, 1993, 31: 149-163. [10] Koenker R, Xiao Z. Quantile autoregression[J]. Journal of the American Statistical Association, 2006, 101(475): 980-990. [11] Hasan M, Koenker R. Robust rank tests of the unit root hypothesis[J]. Econometrica, 1997, 65: 133-161. [12] Koenker R, Xiao Z. Unit root quantile autoregression inference[J]. Journal of the American Statistical Association, 2004, 99: 775-787. [13] Galvao jr A F. Unit root quantile autoregression testing using covariates[J]. Journal of Econometrics, 2009, 152:165-178. [14] 曾惠芳,朱慧明,李素芳.基于MH算法的贝叶斯分位自回归模型[J].湖南大学学报(自然科学版),2010,37(2):88-92. [15] 朱慧明,王彦红,曾惠芳.基于逆跳MCMC的贝叶斯分位自回归模型研究[J].统计与信息论坛,2010,25(1):9-13. |