[1]Engle R F. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation[J]. Econometrica: Journal of the Econometric Society, 1982. 4(50): 987-1007. [2]Bollerslev T. Generalized autoregressive conditional heteroskedasticity[J]. Eeri Research Paper, 1986, 31(3): 307-327. [3]Nelson D B. Conditional heteroskedasticity in asset returns: a new approach[J]. Econometrica, 1991, 59(2): 347-70. [4]Engle R F, Bollerslev T. Modelling the persistence of conditional variances[J]. Econometric Reviews, 1986, 5(1): 1-50. [5]Chou R Y. Volatility persistence and stock valuations: Some empirical evidence using garch[J]. Journal of Applied Econometrics, 1988, 3(3): 279-94. [6]Bollerslev T P, Engle R F, Wooldridge J M. A capital asset pricing model with time varying covariance[J]. Journal of Political Economy, 1988. 96(1): 116-31. [7]Jagannathan R, Glosten L R, Runkle D E. “On the relation between the expected value and volatility of the nominal excess return on stocks”[J]. The Journal of Finance, 1993. 48(5): 1779-1801. [8]Engle R F, Kroner K F. Multivariate simultaneous generalized ARCH[J]. Econometric theory, 1995, 11(1): 122-150. [9]Curto J D, Pinto J C, Tavares G A N. Modeling stock markets’ volatility using GARCH models with Normal, Student’s and stable Paretian distributions[J]. Statistical Papers, 2009, 50(2): 311-321. [10]Liu H, Shi J. Applying ARMA-GARCH approaches to forecasting short-term electricity prices[J]. Energy Economics, 2013. 37: 152-166. [11]Bildirici M, Ersin Ö. Modeling markov switching ARMA-GARCH neural networks models and an application to forecasting stock returns[J]. The Scientific World Journal, 2014. 2014(3): 21. [12]Tian S, Hamori S. Modeling interest rate volatility: a realized GARCH approach[J]. Journal of Banking & Finance, 2015. 61: 158-171. [13]Laurent S, Lecourt C, Palm F C. Testing for jumps in conditionally Gaussian ARMA-GARCH models, a robust approach[J]. Computational Statistics & Data Analysis, 2016, 100: 383-400. [14]Akar C, Çiçek S. “New” monetary policy instruments and exchange rate volatility[J]. Empirica, 2016. 43(1): 141-165. [15]Righi M B, P.S. Ceretta P S. Forecasting value at risk and expected shortfall based on serial pair-copula constructions[J]. Expert Systems with Applications, 2015. 42(17): 6380-6390. [16]萧楠.ARMA-GARCH模型对上海铜期货市场收益率的建模与分析[J].运筹与管理,2006,15(5):128-132. [17]黄海南与钟伟, GARCH类模型波动率预测评价[J].中国管理科学,2007,15(6):13-19. [18]惠军,朱翠.证券投资基金市场的ARMA-ARCH类模型分析[J].合肥工業大學學報:自然科學版,2010,33(7):1108-1112. [19]方世建,韩宇.基于变换核密度估计的半参数GARCH模型[J].系统工程理论与实践,2014,34(8):1963-1970. [20]曹栋,张佳.基于GARCH-M模型的股指期货对股市波动影响的研究[J].中国管理科学,2017,25(1):27-34. [21]Tsay R S, Tiao G C. Consistent estimates of autoregressive parameters and extended sample autocorrelation function for stationary and nonstationary ARMA models[J]. Journal of the American Statistical Association, 1984, 79(385): 84-96. [22]Engle R F, Bollerslev T. “Modeling the persistence of conditional variances”[J]. Econometric Reviews, 1986, 5(1): 1-50. [23]Pascual L, Romo J, Ruiz E. Bootstrap prediction for returns and volatilities in GARCH models[J]. Computational Statistics & Data Analysis, 2006, 50(9): 2293-2312. |