[1] Jin N, Zhou S. Data-driven variation source identification for manufacturing process using the eigenspace comparison method[J]. Naval Research Logistics(NRL), 2006, 53(5): 383-396. [2] Loose J P, Zhou S, Ceglarek D. Variation source identification in manufacturing processes based on relational measurements of key product characteristics[J]. Journal of Manufacturing Science and Engineering, 2008, 130(3): 031007. [2] 汪四水.基于交叉谱分析法的因子筛选[J].数学的实践与认识,2005,35(11):45-51. [4] 王宁,徐济超,杨剑锋.多级制造过程关键质量特性识别方法[J].计算机集成制造系统,2013,19(4):888-895. [5] Xiang L M,Tsung F. Statistical monitoring of multistage processes based on engineering models[J]. IIE Transactions, 2008, 40(10): 957-970. [6] Wu F C. Optimization of correlated multiple quality characteristics using desirability function[J]. Quality Engineering, 2005, 17(1): 119-126. [7] Ding Yu, Ceglarek D, Shi Jianjun. Fault diagnosis of multistage manufacturing processes by using state space approach[J]. Journal of Manufacturing Science and Engineering, 2002, 124(2): 313-322. [8] Wang H, Fang Z G, Wang D A, et al. An integrated fuzzy QFD and grey decision-making approach for supply chain collaborative quality design of large complex products[J]. Computers & Industrial Engineering, 2020(140): 106-212. [9] 闫伟,何桢,李岸达.基于CEM-IG算法的复杂产品关键质量特性识别[J].系统工程理论与实践,2014,5:1230-1236. [10] 李岸达,何桢,何曙光.基于Filter与Wrapper的复杂产品关键质量特性识别[J].工业工程与管理,2014,19(3):53-59. [11] 王化强,牛占文.基于LASSO的复杂产品关键质量特性识别[J]. 系统工程,2014,6:10-21. [12] 朱才松.复杂产品制造过程关键质量特征识别与最终质量水平预测方法研究[D].合肥工业大学,2018. [13] 赵喜.复杂机电产品制造过程关键质量特性控制技术研究[D].重庆大学,2009. [14] Zou H. The adaptive LASSO ad Its oracle properties[J]. Journal of the American Statistical Association, 2006, 101: 1418-1429. [15] 鲁庆,穆志纯.基于LASSO方法的碳钢土壤腐蚀率预报研究[J].科学技术与工程,2014,35(12):84-89. [16] Jianjun Shi, Shiyu Zhou. Quality control and improvement for multistage systems: a survey[J]. IIE Transactions, 2009, 41: 744-753. [17] Zhou S, Ding Y, Chen Y, Shi J. Diagnosability study of multi-station manufacturing processes based on linear mixed model[J]. Technometrics, 2003b 45(4): 312-325. [18] Jin N, Zhou S. Data-driven variation source identification of manufacturing processes based on eigenspace comparison[J]. Naval Research Logistics, 2006, 53(5): 383-396. [19] Loose J, Zhou S, Ceglarek D. Variation source identification in manufacturing processes based on relation measurements of key product characteristics[J]. Journal of Manufacturing Science and Engineering, 2008, 130(3): 1-11. [20] Efton B. Missing data, imputation, and the bootstrap[J]. Journal of the American Wold S, Martens H, WoldH. The multivariate calibration problem in chemistry solved by the PLS method[J]. Ruhe A, Kagstrom B(EDs), Proc.Conf.Matrix Pencils, Lectures. [21] Zou H, Hastie T. Regularization and variable selection via the elastic[J]. Journal of the Royal Statistical Society, 2005, 67(2): 301-320. [22] 聂斌,姚雪海,李京亚.基于聚类的轮廓数据质量监控方法研究[J].运筹与管理,2017,4:112-117. [23] 王宁,徐济超,杨剑锋.基于PLSR的多级制造过程关键质量特性识别方法[J].运筹与管理,2013,22(05):226-232. [24] 许胜男.基于自助填补技术的变量选择方法研究及其应用[D]. 浙江工商大学,2017. [25] 柳剑.制造系统运行可靠性分析与维修保障策略研究[D].重庆大学,2014. [26] 柳剑,张根保,李冬英,李岳,钱宝明.基于脆性理论的多状态制造系统可靠性分析[J].计算机集成制造系统,2014,20(01):155-164. |