Operations Research and Management Science ›› 2020, Vol. 29 ›› Issue (8): 27-34.DOI: 10.12005/orms.2020.0197

• Theory Analysis and Methodology Study • Previous Articles     Next Articles

Portfolio Game with Liability Based on the Heston Stochastic Volatility Model

YANG Lu1, ZHU Huai-nian2, ZHANG Cheng-ke2   

  1. 1. School of management, Guangdong University of Technology, Guangzhou 510520, China;
    2. School of Economics & Commerce, Guangdong University of Technology, Guangzhou 510520, China
  • Received:2018-08-26 Online:2020-08-25

Heston随机波动率模型下带负债的投资组合博弈

杨璐1, 朱怀念2, 张成科2   

  1. 1.广东工业大学 管理学院,广东 广州 510520;
    2.广东工业大学 经济与贸易学院,广东 广州 510520
  • 通讯作者: 朱怀念(1985-),男,安徽蚌埠人,副教授,博士,主要从事动态博弈理论及应用等方面的教学和科研工作(本文通讯作者);
  • 作者简介:杨璐(1989-),女,河南周口人,博士研究生,研究方向为博弈论及其应用;张成科(1964-),男,广西贺州人,教授,博士,主要从事博弈论及其应用、金融工程等方面的教学和科研工作。
  • 基金资助:
    国家自然科学基金资助项目(71571053);广东省自然科学基金项目(2016A03031370,2018A030313687);广东省教育厅普通高校特色创新项目(2015WTSCX014);广东大学生科技创新培育专项资金(pdjha0151);2018年度教育部人文社会科学研究青年基金项目(18YJC790003)

Abstract: This paper studies a stochastic differential portfolio game between two investors under the Heston model. The financial market is constituted by a risk-free asset and a risky asset whose price process is subjected to the Heston model. The game is formulated by two utility maximization problems, and each investor tries to maximize his utility of the difference between his terminal wealth and that of his competitor. Firstly, we derive the HJB equations and the corresponding value functions by using the dynamic programming principle. Then, the explicit expressions of equilibrium investment strategies and the value functions for the non-zero game under the framework of the power utility function are received. Finally, the influence of the model parameters on the equilibrium investment strategies and value functions is obtained by numerical simulation. Thus, a certain theory instruction for the actual assets and liabilities management is provided.

Key words: portfolio game, Heston model, liability, Nash equilibrium

摘要: 本文研究了Heston随机波动模型下两个投资人之间的随机微分投资组合博弈问题。假设金融市场上存在价格过程服从常微分方程的无风险资产和价格过程服从Heston随机波动率模型的风险资产。该博弈问题被构造成两个效用最大化问题,每个投资者的目标是最大化终止时刻个人财富与竞争对手财富差的效用。首先,我们应用动态规划原理,得出了相应值函数所满足的HJB方程。然后,得到了在幂期望效用框架下非零和博弈的均衡投资策略和值函数的显式表达。最后,借助数值模拟,分析了模型中的参数对均衡投资策略和值函数的影响,从而为资产负债管理提供一定的理论指导。

关键词: 投资组合博弈, Heston模型, 负债, 纳什均衡

CLC Number: