[1] 郭鹏,林祥枝,黄艺,涂思明,白晓明,杨雅雯,叶林.共享单车:互联网技术与公共服务中的协同治理[J].公共管理学报,2017,14(03):1-10. [2] Bulhoes T, Subramanian A, Erdogan G, Laporte G. The static bike relocation problem with multiple vehicles and visits[J]. European Journal of Operational Research, 2018, 264(2): 508-523. [3] 潘海啸,高雅.共享单车的规模化扩张与精细化管理[J].上海城市管理,2017,26(04):58-62. [4] 种颖珊,韩晓明.基于随机森林与时空聚类的共享单车站点需求量预测[J].科学技术与工程,2018,18(32):89-94. [5] Kaltenbrunner A, Meza R, Grivolla J, Codina J, Banchs R E. Urban cycles and mobility patterns: exploring and predicting trends in a bicycle-based public transport system[J]. Pervasive & Mobile Computing, 2010, 6(4): 455-466. [6] Yang Z, Hu J, Shu Y, Cheng P, Chen J, Moscibroda T. Mobility modeling and prediction in bike-sharing systems[C]. international conference on mobile systems, applications, and services, 2016. 165-178. [7] Li Y, Yu Z, Zhang H, Chen L. Traffic prediction in a bike-sharing system[C]. Sigspatial International Conference on Advances in Geographic Information Systems. ACM, 2015. 1-10. [8] Wu J, Chang P. A prediction system for bike sharing using artificial immune system with regression trees[C]. international conference on advanced applied informatics, 2015. 511-516. [9] Froehlich J E, Neumann J, Oliver N. Sensing and predicting the pulse of the city through shared bicycling[C]. Twenty-First International Joint Conference on Artificial Intelligence. 2009.1420-1426. [10] Singhvi D, Singhvi S, Frazier P I, et al. Predicting bike usage for new york city's bike sharing system[C]. 29th AAAI Conference on Artificial Intelligence. Austin: AAAI Workshop Computational Sustainability,2015. 110-114. [11] Zhou Y, Wang L, Zhong R, Tan Y. A markov chain based demand prediction model for stations in bike sharing systems[J]. Mathematical Problems in Engineering, 2018, 2018. 1-8. [12] Thu N T, Thanh L T, Dung C T, Linhtrung N, Le H V. Multi-source data analysis for bike sharing systems[C]. Autonomic and Trusted Computing, 2017. 235-240. [13] Chang P C, Wu J L, Xu Y, Zhang M, Lu X Y. Bike sharing demand prediction using artificial immune system and artificial neural network[J]. soft computing, 2019, 23(2): 613-626. [14] 焦志伦,金红,刘秉镰,张子豪.大数据驱动下的共享单车短期需求预测——基于机器学习模型的比较分析[J].商业经济与管理,2018,38(8):16-25. [15] Breiman L. Random forests[J]. Machine learning, 2001, 45(1): 5-32. [16] Friedman J H. Greedy function approximation: a gradient boosting machine[J]. Annals of statistics, 2001. 1189-1232. [17] Chen T Guestrin C. XGBoost: a scalable tree boosting system[C]. In Proceeding KDD'16 Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, 2016. 785-794. [18] 万玉成.广义加权平均组合预测及其应用[J].管理工程学报,2000,14(1):67-68. [19] 陈华友,刘春林.基于IOWA算子的组合预测方法[J].预测,2003,22(6):61-65. [20] 张贝贝,李静文,杨亚楠.基于IOWA算子的多参数指数平滑模型组合预测[J].统计与决策,2019,35(06):30-35. [21] Song H, Zhang R, Zhang Y, Xia F, Miao Q. Energy consumption combination forecast of Hebei province based on the IOWA operator[J]. Energy Procedia, 2011, 5: 2224-2229. [22] 陈启明,陈华友.基于IOWA算子的投影法在加权几何平均组合预测模型中的应用及性质[J].数理统计与管理,2013,32(06):1020-1027. [23] 陈启明,陈华友.基于IOWA算子的两类准则下的最优组合预测模型及其应用[J].数理统计与管理,2013,32(05):847-853. [24] 周礼刚,陈华友,韩冰,汪晶瑶,艾全达.基于对数灰关联度的IOWGA算子最优组合预测模型[J].运筹与管理,2010,19(06):33-38. [25] 丁子千,汪晶瑶,周礼刚,陈华友.基于相关系数的IOWGA算子组合预测模型[J].运筹与管理,2010,19(04):45-50. [26] 陈华友,刘春林,盛昭瀚.IOWHA算子及其在组合预测中的应用[J].中国管理科学,2004(05):36-41. [27] 陈华友,盛昭瀚,刘春林.基于向量夹角余弦的组合预测模型的性质研究[J].管理科学学报,2006(02):1-8. [28] 胡浩,闫伟,李泓明.基于组合预测方法的城市道路短时交通流预测[J].工业工程与管理,2019,24(03):107-115. |