Operations Research and Management Science ›› 2022, Vol. 31 ›› Issue (3): 44-49.DOI: 10.12005/orms.2022.0076

• Theory Analysis and Methodology Study • Previous Articles     Next Articles

Research on Network Positive Energy Recommendation Algorithm Based on Hesitant Fuzzy Similarity

ZANG Zhen-chun1, LI Jie-lu2, WANG Mei-qi2, WANG Na-na3   

  1. 1. School of Mathematics and Statistics, Zhoukou Normal University, Zhoukou 466001, China;
    2. Department of Computer and Information Engineering, Henan University of Economics and Law, Zhengzhou 450046, China;
    3. Henan Economic Research Center, Henan University of Economics and Law, Zhengzhou 450046, China
  • Received:2020-12-30 Online:2022-03-25 Published:2022-04-12

基于犹豫模糊相似的网络正能量推荐算法研究

臧振春1, 李洁璐2, 王美琦2, 王娜娜3   

  1. 1.周口师范学院 数学与统计学院,河南 周口 466001;
    2.河南财经政法大学 计算机与信息工程学院,河南 郑州 450046;
    3.河南财经政法大学 河南经济研究中心,河南 郑州 450046
  • 通讯作者: 王娜娜,女,硕士,副研究员。
  • 作者简介:臧振春,男,博士研究生,教授。
  • 基金资助:
    2020河南省哲学社会科学规划项目(2020BJJ041);2021年度河南省高等学校重点科研项目(21A520021);2021河南省哲学社会科学规划项目(2021BXW003)

Abstract: According to the fuzziness of positive energy and the characteristics of multiple rules, this paper establishes the evaluation set of positive energy events with the help of linguistic hesitant fuzzy set and ordinary hesitant fuzzy set, and determines the fuzzy entropy and weight of each attribute according to the effect of event attributes on positive energy, then establishes the hesitant fuzzy recommendation model. Drawing on the idea of TOPSIS, the standard value of positive energy event is obtained from big data, and the recommendation threshold is determined by calculating the fuzzy similarity between the event and the standard value to obtain satisfactory positive energy event recommendation results.

Key words: network positive energy, recommendation algorithm, fuzzy similarity, fuzzy entropy

摘要: 论文依据网络正能量模糊性和多规则的特点,借助语言犹豫模糊集和普通犹豫模糊集建立正能量事件的评价集,针对事件属性对正能量的影响效应确定各属性的模糊熵和权重,建立犹豫模糊推荐模型。借助TOPSIS的思想,从大数据中得到正能量事件的标准值,通过事件与标准值模糊相似度的计算确定推荐阈值以得到满意的正能量事件推荐结果。

关键词: 网络正能量, 推荐算法, 模糊相似度, 模糊熵

CLC Number: