[1] YENISEY M M, YAGMAHAN B. Multi-objective permutation flow shop scheduling problem: Literature review, classification and current trends[J]. Omega, 2014, 45(6): 119-135. [2] RUIZ R, MAROTO C. A comprehensive review and evaluation of permutation flow shop heuristics[J]. European Journal of Operational Research, 2005, 165(2): 479-494. [3] 张先超,周泓.变参数量子进化算法及其在求解置换流水车间调度问题中的应用[J].计算机集成制造系统,2016(3):774-781. [4] LIU H, GAO L, PAN Q. A hybrid particle swarm optimization with estimation of distribution algorithm for solving permutation flow shop scheduling problem[J]. Expert Systems with Applications, 2011, 38(4): 4348-4360. [5] 裴小兵,于秀燕.改进猫群算法求解置换流水车间调度问题[J].智能系统学报,2019,14(4):769-778. [6] 刘长平,叶春明. 置换流水车间调度问题的萤火虫算法求解[J].工业工程与管理,2012(3):56-59,65. [7] LI X, MA S. Multi-objective discrete artificial bee colony algorithm for multi-objective permutation flow shop scheduling problem with sequence dependent setup times[J]. IEEE Transactions on Engineering Management, 2017, 64(2): 149-165. [8] HENNEBERG M, NEUFELD J S. A constructive algorithm and a simulated annealing approach for solving flow shop problems with missing operations[J]. International Journal of Production Research, 2016, 54(11-12): 3534-3550. [9] SIMON D. Biogeography-based optimization[J]. IEEE Transactions on Evolutionary Computation, 2008, 12(6): 702-713. [10] 张国辉,聂黎,张利平,等.生物地理学优化算法理论及其应用研究综述[J].计算机工程与应用,2015,51(3):12-17. [11] LIN J. A hybrid discrete biogeography-based optimization for the permutation flow shop scheduling problem[J]. International Journal of Production Research, 2015: 1-10. [12] LIU S, WANG P, ZHANG J. An improved biogeography-based optimization agorithm for bocking fow sop sheduling problem[J]. Chinese Journal of Electronics, 2018, 27(2): 351-358. [13] ZHAO F, QIN S, ZHANG Y, et al. A hybrid biogeography-based optimization with variable neighborhood search mechanism for no-wait flow shop scheduling problem[J]. Expert Systems with Applications, 2019, 126(7): 321-339. [14] HSU C Y, CHANG P C, CHEN M H. A linkage mining in block-based evolutionary algorithm for permutationflow shop scheduling problem[J]. Computers & Industrial Engineering, 2015, 83(C): 159-171. [15] CHEN Y M, CHEN M C, CHANG P C, et al. Extended artificial chromosomes genetic algorithm for permutation flow shop scheduling problems[J]. Computers & Industrial Engineering, 2012, 62(2): 536-545. [16] CHANG P C, CHEN M H. A block-based estimation of distribution algorithm using bivariate model for scheduling problems[J]. Soft Computing, 2014, 18(6): 1177-1188. [17] CHEN M H, CHEN S H, CHANG P C. Imperial competitive algorithm with policy learning for the traveling salesman problem[J]. Soft Computing, 2015: 1-13. [18] TIZHOOSH H R. Opposition-based learning: A new scheme for machine intelligence[J]. IEEE, 2005, 1: 695-701. [19] 裴小兵,赵衡.改进二元分布估计算法求解置换流水车间调度问题[J].运筹与管理,2018,27(10):193-199. |