[1] WANG C, JI Z, WANG Y. Multi-objective flexible job shop scheduling problem using variable neighborhood evolutionary algorithm[J]. Modern Physics Letters B, 2017, 31(19-21): 174-177. [2] HAMED P, WONG K Y, WONG W P. Minimizing total carbon footprint and total late work criterion in flexible job shop scheduling by using an improved multi-objective genetic algorithm[J]. Resources, Conservation and Recycling, 2018, 128: 267-283. [3] KAMBLE S V, MANE S U, UMBARKAR A J. Hybrid multi-objective particle swarm optimization for flexible job shop scheduling problem[J]. International Journal of Intelligent Systems Technologies and Applications, 2015, 7(4): 54-61. [4] YAZDANI M, ZANDIEH M, TAVAKKOLIM R. Evolutionary algorithms for multi-objective dual-resource constrained flexible job-shop scheduling problem[J]. Opsearch, 2019, 56(3): 983-1006. [5] 卫少鹏,王婷,周彤.基于综合模糊评价法优化绿色柔性流水车间调度问题[J].物流科技,2021,44(3):28-32. [6] LEI D M, LI M, WANG L. A two-phase meta-heuristic for multi-objective flexible job shop scheduling problem with total energy consumption threshold[J]. IEEE Transactions on Cybernetics, 2019, 49(3): 1097-1109. [7] WU X L, SUN Y J. A green scheduling algorithm for flexible job shop with energy-saving measures[J].Journal of Cleaner Production, 2018, 172(3): 3249-3264. [8] 张守京,王彦亭.基于改进NSGA2的柔性车间多目标智能调度问题研究[J].现代制造工程,2020(9):23-31. [9] ESCAMILLA J, SALIDO M A, GIRET A, et al. A metaheuristic technique for energy-efficiency in job-shop scheduling[J]. The Knowledge Engineering Review, 2017, 31(5): 1-11. [10] KHODAKARAM S, LI J P, DAVOOD M, et al. A multi objective volleyball premier league algorithm for green scheduling identical parallel machines with splitting jobs[J]. Applied Intelligence, 2021, 51(7): 4143-4161. [11] ZHANG R, RAYMOND C. Solving the energy-efficient job shop scheduling problem: A multi-objective genetic algorithm with enhanced local search for minimizing the total weighted tardiness and total energy consumption[J]. Journal of Cleaner Production, 2016, 112(Part4): 3361-3375. [12] CIVICIOGLU P. Backtracking search optimization algorithm for numerical optimization problems[J]. Applied Mathematics and Computation, 2013, 219(15): 8121-8144. [13] 赵琳敬,葛宝臻,陈雷.基于变异交叉方程与进化选择机制的回溯优化改进算法[J].计算机应用研究,2019,36(7):1980-1983. [14] KACEM I, HAMMADI S, BORNE P. Approach by localization and multi-objective evolutionary optimization for flexible job-shop scheduling problems[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C(Applications and Reviews), 2002, 32(1): 1-13. [15] PEZZELLA F, MORGANTI G, CIASCHETTI G. A genetic algorithm for the flexible job-shop scheduling problem[J]. Computers and Operations Research, 2007, 35(10): 3202-3212. [16] 王建华,杨琦,朱凯.自适应多种群Jaya算法求解绿色并行机调度问题[J].计算机集成制造系统,2023,29(1):111-120. [17] WANG X J, GAO L, ZHANG C Y, et al. A multi-objective genetic algorithm based on immune and entropy principle for flexible job-shop scheduling problem[J]. The International Journal of Advanced Manufacturing Technology, 2010,51(5): 757-767. [18] WANG L, ZHOU G, XU Y, et al. An enhanced pareto-based artificial bee colony algorithm for the multi-objective flexible job-shop scheduling[J]. The International Journal of Advanced Manufacturing Technology, 2012, 60(9-12): 1111-1123. [19] 喻明让,陈云,张志刚.离散粒子群优化算法求解多目标柔性作业车间调度问题[J].制造技术与机床,2019(1):159-165. |