[1] DE FINETTI B. Su un’impostazione alternativa della teoria collettiva del rischio[C]//Transactions of the XVth International Congress of Actuaries, 1957, 2(1): 433-443. [2] GERBER H U. Entscheidungskriterien fuer den zusammengesetzten Poisson-proze[J]. Bulletin of the Swiss Association of Actuaries.1969, 69(1): 185-228. [3] AZCUE P, MULER N. Optimal reinsurance and dividend distribution policies in the cramer-lundberg model[J]. Mathematical Finance, 2005, 15(2): 261-308. [4] LI J W, LIU G X, ZHAO J Y. Optimal dividend-penalty strategies for insurance risk models with surplus-dependent premiums[J]. Acta Mathematica Scientia, 2020, 40B(1): 170-198. [5] SCHMIDLI H. Stochastic control in insurance[M]. London: Springer-Verlag, 2008: 69-96. [6] CAI J. On the time value of absolute ruin with debit interest[J]. Advances in Applied Probability, 2007, 39(2): 343-359. [7] CAI J, GERBER H U, YANG H. Optimal dividends in an ornstein-uhlenbeck type model with credit and debit interest[J]. North American Actuarial Journal, 2006, 10(2): 94-108 [8] WANG C, YIN C. Dividend payments in the classical risk model under absolute ruin with debit interest[J]. Applied Stochastic Models in Business and Industry, 2010, 25(3): 247-262. [9] YUEN K C, ZHOU M, GUO J. On a risk model with debit interest and dividend payments[J]. Statistics and Probability Letters, 2008, 78(15): 2426-2432. [10] ZHU J. Optimal dividend control for a generalized risk model with investment incomes and debit interest[J]. Scandinavian Actuarial Journal, 2013(2): 140-162. [11] BAI L, PAULSEN J. On non-trivial barrier solutions of the dividend problem for a diffusion under constant and proportional transaction costs[J]. Stochastic Processes and their Applications, 2012, 122(12): 4005-4027. [12] CADENILAS A, CHOULLI T, TAKSAR M, et al. Classical and impulse stochastic control for the optimization of the dividend and risk policies of an insurance firm[J]. Mathematical Finance, 2006, 16(1): 181-202. [13] PAULSEN J. Optimal dividend payments until ruin of diffusion processes when payments are subject to both fixed and proportional costs[J]. Advances in Applied Probability, 2007, 39(3): 669-689. [14] PAULSEN J, HUNTING M. Optimal dividend policies with transaction costs for a class of jump-diffusion processes[J]. Finance and Stochastics, 2013, 17(1): 73-106. [15] BAI L, GUO J. Optimal dividend payments in the classical risk model when payments are subject to both transaction costs and taxes[J]. Scandinavian Actuarial Journal, 2010(1): 36-55. [16] ALBRECHER H, THONHAUSER S. Optimal dividend strategies for a compound poisson process under transaction costs and power utility[J]. Stochastic Models, 2011, 27(1): 120-149. [17] 张帅琪,刘国欣.复合Poisson模型带比例与固定交易费用的最优分红与注资[J].中国科学:数学,2012,42(8):827-843. [18] 刘兆阳.逐段决定Markov过程得测度值生成元及其应用[D].长沙:中南大学,2019:21-35. [19] JACOD J, SKOROKHOD A V. Jumping markov processes[J]. Annales de l’Institut Henri Poincaré, 1996, 31(1): 11-67. |