Robust Measure of Dynamic Higher Moments Risk and Its Application to Parametric Portfolio Selection
LIU Shuting1, XU Qifa1,2, JIANG Cuixia1
1. School of Management, Hefei University of Technology, Hefei 230009, China; 2. Key Laboratory of Process Optimization and Intelligent Decision-making, Ministry of Education, Hefei 230009, China
LIU Shuting, XU Qifa, JIANG Cuixia. Robust Measure of Dynamic Higher Moments Risk and Its Application to Parametric Portfolio Selection[J]. Operations Research and Management Science, 2023, 32(8): 166-173.
[1] GROENEVELD R A, MEEDEN G. Measuring skewness and kurtosis[J]. The Statistician, 1984, 33(4): 391-399. [2] HOGG R V. Adaptive robust procedures: A partial review and some suggestions for future applications and theory[J]. Journal of the American Statistical Association, 1974, 69(348): 909-923. [3] KIM T H, WHITE H. On more robust estimation of skewness and kurtosis: Simulation and application to the S&P500 index[J]. Journal of Thoracic & Cardiovascular Surgery, 2004, 134(1): 256-257. [4] GHYSELS E, PLAZZI A, VALKANOV R. Why invest in emerging markets? The role of conditional return asymmetry[J]. The Journal of Finance, 2016, 71(5): 2145-2192. [5] MARKOWITZ H. Portfolio selection[J]. The Journal of Finance, 1952, 7(1): 77-91. [6] BRIEC W, KERSTENS K, JOKUNG O. Mean-variance-skewness portfolio performance gauging: A general shortage function and dual approach[J]. Management Science, 2007, 53(1): 135-149. [7] 王灿杰,邓雪.基于可信性理论的均值-熵-偏度投资组合模型及其算法求解[J].运筹与管理,2019,28(2):154-159. [8] JONDEAU E, ROCKINGER M. Optimal portfolio allocation under higher moments[J]. European Financial Management, 2006, 12(1): 29-55. [9] MEHLAWAT M K, KUMAR A, YADAV S, et al. Data Envelopment Analysis based fuzzy multi-objective portfolio selection model involving higher moments[J]. Information Sciences, 2018, 460-461: 128-150. [10] CHEN B, ZHONG J, CHEN Y. A hybrid approach for portfolio selection with higher-order moments: Empirical evidence from Shanghai Stock Exchange[J]. Expert Systems with Applications, 2020, 145: 113104. [11] BRANDT M, SANTACLARA P, VALKANOV R. Parametric portfolio policies: Exploiting characteristics in the cross-section of equity returns[J]. The Review of Financial Studies, 2009, 22(9): 3411-3447. [12] TAYLOR J W. A quantile regression neural network approach to estimating the conditional density of multiperiod returns[J]. Journal of Forecasting, 2000, 19(4): 299-311. [13] 杨璐,朱怀念,张成科.Heston随机波动率模型下带负债的投资组合博弈[J].运筹与管理,2020,29(8):27-34. [14] 许启发,左俊青,蒋翠侠.基于DCC-MIDAS与参数化策略的时变组合投资决策[J].系统科学与数学,2018,38(4):438-455. [15] 许启发,刘书婷,蒋翠侠.基于MIDAS分位数回归的条件偏度组合投资决策[J].中国管理科学,2021,29(3):1-13. [16] YUE W, WANG Y. A new fuzzy multi-objective higher order moment portfolio selection model for diversified portfolios[J]. Physica A: Statistical Mechanics and its Applications, 2017, 465: 124-140.