Mean-variance Portfolio Selection Using Machine Learning Hyperparameter Optimization
ZHANG Peng1, DANG Shili1, HUANG Meiyu2
1. School of Economics & Management, South China Normal University, Guangzhou 510006, China; 2. School of Management, Huazhong University of Science & Technology, Wuhan 430074, China
[1] WANG W Y, LI W Z, ZHANG N, et al. Portfolio formation with preselection using deep learning from long-term financial data[J]. Expert Systems with Applications, 2020, 143: 113042. [2] 李斌,邵新月,李玥阳.机器学习驱动的基本面量化投资研究[J].中国工业经济,2019(8):61-79. [3] 戴德宝,兰玉森,范体军,等.基于文本挖掘和机器学习的股指预测与决策研究[J].中国软科学,2019(4):166-175. [4] 苟小菊,王芊.基于数据挖掘技术的股票收益率方向研究[J].运筹与管理,2021,30(1):163-169. [5] 马甜,姜富伟,唐国豪.深度学习与中国股票市场因子投资—基于生成式对抗网络方法[J].经济学(季刊),2022,22(3):819-842. [6] 许雪晨,田侃.一种基于金融文本情感分析的股票指数预测新方法[J].数量经济技术经济研究,2021,38(12):124-145. [7] SERMPINIS G, STASINAKIS C, ROSILLO R, et al. European exchange trading funds trading with locally weighted support vector regression[J]. European Journal of Operational Research, 2017, 258(1): 372-384. [8] KRAUS M, FEUERRIEGEL S. Decision support form financial disclosures with deep neural networks and transfer learning[J]. Decision Support Systems, 2017, 104: 38-48. [9] SONG K, YAN T, DING T, et al. A steel property optimization model based on the XGBoost algorithm and improved PSO[J]. Computational Materials Science,2020, 174: 109472. [10] ZHAO S Q, ZENG D G, WANG W H. et al. Mutation grey wolf elite PSO balanced XGBoost for radar emitter individual identification based on measured signals[J]. Measurement, 2020, 159: 107777. [11] YANG X S. Firefly algorithms for multimodal optimization[C]//OSAMU W, THOMAS Z. Proceedings of the 5th International Conference on Stochastic Algorithms: Foundations and Applications. Berlin, Heidelberg: Springer-Verlag, 2009: 169-178. [12] ZHANG J, TENG Y F, CHEN W. Support vector regression with modified firefly algorithm for stock price forecasting[J]. Applied Intelligence, 2019, 49: 1658-1674. [13] CHEN W, ZHANG H Y, MEHLAWAT M K, et al. Mean-variance portfolio optimization using machine learning-based stock price prediction[J]. Applied Soft Computing, 2021, 100: 106943. [14] WANG C F, CHU X Y. An improved firefly algorithm with specific probability and its engineering application[J]. IEEE Access, 2019, 7: 57424-57439. [15] MARKOWITZ H M. Portfolio selection[J]. The Journal of Finance, 1952, 7(1): 77-91. [16] YANG L, SHAMI A. On hyperparameter optimization of machine learning algorithms: Theory and practice[J]. Neurocomputing, 2020, 415: 295-316. [17] CHEN T Q, GUESTRIN C. XGBoost: A scalable tree boosting system[C]//The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining(KDD’16), August 13-17, 2016, San Francisco, CA, USA. New York: Association for Computing Machinery, 2016: 785-794. [18] 张鹏.不允许卖空情况下均值-方差和均值-VaR投资组合比较研究[J].中国管理科学,2008(4):30-35.